Section 3.2: Logarithmic Functions
- Express the equation in exponential form. solution
(a) $\log_{27}(3)=\frac{1}{3}$ (b) \(\log_{1/5}(7y)=4 \) (c) $\ln(5)=2y$ (d) $\ln(t+2) = -1$
- Express the equation in logarithmic form. solution
(a) $10^{-2}=\frac{1}{100}$ (b) $5^{3x}=10$ (c) $e^{x+2}=0.6$ (d) $e^{0.9x}=t$
- Evaluate the epression using properties of logarithm. solution
(a) $\log_3 \left( \frac{1}{243}\right)$ (b) $\log_{1/4}(64)$ (c) $\log_4(\sqrt{4})$ (d) $\ln(e^3)$ (e) $\ln(1/e)$
- Evaluate the expression using properties of logarithm. solution
(a) $\log_4(0.125)$ (b) $\log_4(\sqrt{2})$ (c) $\log_4\left(\frac{1}{2} \right) $ (d) $\log_4(8)$
- Find the exact value of the logarithm. solution
(a) \(\log_5 \sqrt[3] 5 \) (b) \(\log_2(\log_3 81) \) (c) \(\log_5(\log_7 7) \)
- Solve for $x$. solution
(a) $\log_2(x)=4$ (b) $\ln(1/e)=x$ (c) $\ln(5x+6)=3 $ (d) $5 \log_{10}(x-3)=12$
- Use the Change of Base formula and a calculator to evaluate the logarithm. solution
(a) $\log_6(3)$ (b) $\log_8(96)$ (c) $\log_4(7)$