Sec 2.1: Functions
- A piecewise defined function is given as \(
f(x) = \begin{cases}
x^2+4x & \text{if } x \le -1, \\
x & \text{if } -1 < x \le 1, \\
-1 & \text{if } x > 1.
\end{cases}\) Evaluate \( f(x)\) at the indicated values.
(a) \( f(-2) \)  (b) \( f(0) \)  (c) \( f(-1) \)   (d) \(f(-5/4)\)   (e) \(f(30)\)
- Evaluate the function \( f(x) = x^2-7x+8\) at the given values of the independent variable and simplify. solution
(a) \( f(-2) \) (b) \( f(x+1) \) (c) \( f(-x) \)
- If \( f(x)=\begin{cases} 2x-7,
\quad x
\geq 0,
\\ \sqrt{5-2x}, \quad x < 0,
\end{cases} \) and \(g(x)=\begin{cases}
x^2-x+1, \quad x < 1, \\ |2x-3| , \quad
x \geq 1, \end{cases} \) evaluate the following:
solution
(a) \(f(-2)\) (b) \(g(-3)\)
(c) \(g(1)\) (d) \(f(5)\)
(e) \(g(0)\) (f)
\(g(3)\)
- Suppose the tax liability \(T \) on \(x\) dollars of taxable
income is given by
\(T(x)=\begin{cases}
0.06x \qquad \qquad \quad \text{if} \,
\,
0 < x < 30,000,\\
1,800+0.04x \qquad \text{if} \, \, 30,000
\leq x < 80,000,\\
5,000+0.05x \qquad \text{if} \, \, x \geq 80,000.
\end{cases}\)
Find the tax liability on each taxable income.
solution
(a) \(\displaystyle{\$25,000}\)
(b) \(\displaystyle{\$125,000}\)
(c) \(\displaystyle{\$60,000}\)
- Evaluate the difference quotient as indicated.
(a) \( \dfrac{f(a+h)-f(a)}{h}\) for \( f(x)=x^2\) solution
(b) \( \dfrac{f(4+h)-f(4)}{h}\) for \( f(x)=\sqrt{x}\) solution
(c) \( \dfrac{f(x+h)-f(x)}{h}\) for \( f(x)=\dfrac{1}{\sqrt{x}}\) solution
- Given \( f(x)=5x-7 \). Evaluate \(\dfrac{f(1+h)-f(1)}{h} \). solution
- Find the difference quotient \(\dfrac{f(4+h)-f(4)}{h} \) and simplify for the function \( f(x)=\sqrt{x}\). solution
- Find the difference quotient \(\dfrac{f(a+h)-f(a)}{h}\) and simplify for the function \(f(x)=3x^2-5x \). solution
- Find the domain of the following functions in interval notation. solution
(a) \( \displaystyle{f(x)=\frac{3}{x+2}} \) (b) \(\displaystyle{f(x)=\frac{x^2+9}{x^2-9}}\) (c) \(\displaystyle{f(x)=x^2-x+1}\) (d) \( \displaystyle{ f(x)= \frac{2}{\sqrt{4-x^2}} }\) (e) \(\displaystyle{ f(x)= \frac{\sqrt{4-2x}}{x+5}}\)
- Find the domain of the function. solution
(a) \(g(x)=\sqrt{x+5} \) (b) \(f(x)=\dfrac{x-5}{\sqrt{43+8x}} \)