Integration by substitution
1. Compute each indefinite integral.
(a) \( \int (1-2x)^5 dx\) solution
(b) \(\displaystyle{\int \frac{x^2}{1+x^3}\, dx}\) solution
(c) \(\displaystyle{\int x^2 (x^3-2)^7 \, dx}\) solution
(d) \( \displaystyle{\int
\frac{x}{\frac{1}{2}x^2-5}}\, dx \) solution
(e) \( \int \displaystyle{ e^{-x} \, dx }\) solution
(f) \( \int\displaystyle{e^{3x-1}\, dx}\) solution
(g) \( \displaystyle{\int x \,\sqrt{1-x^2} \, \,
dx}\) Solution
(h)\( \displaystyle{\int (t-2)\sqrt{3t^2-12t} \, \, dt}\) Solution
2. Find the indefinite integral.
(i) \(\displaystyle{\int e^{x^5} x^4\, dx}\) solution
(ii) \(\displaystyle{\int \frac{x^2-4}{x^3-12x+6} \, dx}\) solution
(iii) \(\displaystyle{\int \frac{x^8}{\sqrt{x^9-7}}\, dx}\) solution
(iv) \(\displaystyle{\int \frac{e^{5x}}{2+e^{5x}} \, dx}\) solution
3. Compute the following definite integral.
- \(\displaystyle{ \int_{-1}^1 x\,(x^2+1)^2 \, \, dx}\) Solution
- \(\displaystyle{ \int_0^1 x \, \sqrt{5x^2+4} \, \,
dx}\) Solution
- \(\displaystyle{ \int_1^2 \frac{x}{(x^2+3)^2} \, \, dx}\) Solution
- \( \displaystyle{\int_0^1 \frac{x+2}{\sqrt{x^2+4x}} \, \, dx}\) Solution
-
\( \displaystyle{\int_0^4
\frac{e^{\sqrt{x}}} {\sqrt{x}} \, \, dx} \) Solution