Derivatives involving exponential and logarithmic functions
A. Find the derivative of the function (1-6).
1. (a) \(f(x)=e^{2x-7} \) (b) \( f(x)=\ln (2x+7) \) (c) \( f(x)=x^2e^{3x}\) solution
2. (a) \( f(x)=6(\ln (x))^{5/2} \) (b) \(\displaystyle{f(x) = \frac{\ln x}{e^x - x}}\) solution
3. (a) \(\displaystyle{f(x) = e^{-5x} }\) (b) \(\displaystyle{f(x) = (2+\ln x)^5 }\)
(c)\(\displaystyle{f(x) = \ln (5x^2 -x+3) }\) solution
4. (a) \(\displaystyle{f(x) = \ln \frac{2x}{x-1} }\)
(b) \(\displaystyle{f(x) = \ln (x^2 e^x) }\) solution
5. (a) \(\displaystyle{f(x) = x^3 \, e^{x^9-2} }\) (b) \(\displaystyle{f(x) = 7^{x}\, \ln(6x+10)}\) solution
6. (a) \(\displaystyle {f(x)=(x+5)e^x}\) (b) \(\displaystyle{ f(x)=\frac{e^{2x}-1}{\ln (x)+3} }\) solution
B. If \( f(x) = \frac{\ln x }{x^2} \), find \(f'(1)\). solution