Basic Integrals
1. Evaluate each integral. solution
a) \( \int x^3 \, dx\) b) \( \int e^x \, dx\) c) \( \int \frac{1}{x}\, dx\) d) \( \int \sqrt x \, dx\) e) \( \int \sqrt[3] {x^2} \, dx\) f) \( \int \, dx\) g) \( \int 0 \, dx\)
h) \( \int 2 \, dx\) i) \( \int \pi^2 \, dx\) j) \( \int e^3 \, dx\) k) \( \int x^{99} dx\) l) \( \int \frac{1}{x^4}\, dx\) m) \( \int 3^x \, dx\) n) \(\int 5 \cdot 2^x \, dx\)
2. Find the indefinite integral. solution
(a) \( \displaystyle{\int \frac{7}{\sqrt{t}} \, dt}\)
(b) \( \displaystyle{\int \sqrt[5]{u^6} \, du}\) (c)\(
\displaystyle{\int (t^{5/2}+7t^{1/2}-7t^{-1/2}) \, dt}\) (d) \(\displaystyle{\int (x-2)(x+7) \, dx}\)
3. Evaluate each integral. solution
a) \(\displaystyle{ \int (1 + 2x + e^x)\, dx}\) b) \(\displaystyle{\int \frac{x-1}{\sqrt x} dx}\) c) \(\displaystyle{ \int (x^7-5x^2+2x-3) \,dx }\) d) \(\displaystyle{\int \frac{1+x+x^2}{x} dx}\)