Limits
Find the indicated limit, if it exists.
1. (a) \(\displaystyle{\lim_{x \to -1} \: 5x^2-4x+15}\) (b)
\(\displaystyle{\lim_{x \to -1} \frac{2x+1}{x+5}} \) (c) \(\displaystyle{\lim_{x \to 5} \:(x^2+2)(x^2-25)}\) solution
2. (a) \(\displaystyle{\lim_{x \to 1^-} \frac{4-x}{x+2}} \)
(b) \(\displaystyle{\lim_{x \to -2^+} \frac{x-7}{x+5}} \) solution
3. \(\displaystyle{\lim_{x \to 0} \frac{x^2+x}{x}} \) solution
4. (a) \(\displaystyle{\lim_{x \to 0} \,
\dfrac{x^2-4x}{x^3+3x}}\)
(b) \(\displaystyle{\lim_{x \to 2}
\frac{x^2-2x}{x^2-x-2} }\) solution
5. (a) \(\displaystyle{\lim_{x \to -1} 5x^3-3x^2+7x-11}\)
(b) \(\displaystyle{\lim_{x \to 3} \frac{x^2-2x-3}{x-3} }\) solution
6. \(\displaystyle{\lim_{x \to 1} \frac{x^2-1}{x-1}} \) solution
7. (a) \( \displaystyle{\lim_{x \to 3^+} \frac{x+1}{x-3}} \) (b) \( \displaystyle{\lim_{x \to 2^-} \frac{1}{x-2}} \) solution
8. \(\displaystyle{\lim_{x \to 3} \frac{x+9}{x-3}} \) solution1 solution2
9. \(\displaystyle{\lim_{x \to -1} \frac{x^2+x}{x^2-x-2}} \) solution
10. \(\displaystyle{\lim_{h \rightarrow 0}\: \frac{(2+h)^2-4}{h}} \) solution
11. \( \displaystyle{\lim_{x \to \infty} \frac{x^2-5x+7}{4x^2-x^3+1}} \) solution
12. \( \displaystyle{\lim_{x \to \infty} \frac{3x^4-2x+5}{4x^3-5x+1}}\) solution
13. \(\displaystyle{\lim_{x \to \infty} \frac{3x^2-2x+5}{4x^2 + 2x+1}}\) solution
14. \(\displaystyle{\lim_{x \to -\infty} \frac{1-2x+4x^3}{2+x^2-3x^3}}\) solution