The Inverse Trigonometric Functions

 Filling out Unit Circle

 

1. Find the exact value of each expression in radians. If there is no value, write undefined.   SOLUTION

 (a)  \( \tan^{-1} 1\)    (b)  \(\sin^{-1} 2\)    (c)  \(\tan^{-1} \left(- \sqrt{3}\right)\)    (d)  \(\cos^{-1} \left(-\dfrac{\sqrt{3}}{2}\right)\)    (e)  \(\sin^{-1} \left( \sin \dfrac{3\pi}{4} \right)\)    (f)  \(\tan^{-1} \left( \tan \dfrac{\pi}{4} \right)\)

 2. Find the exact value of each expression in radians. If there is no value, write undefined.   SOLUTION

(a)  \(\cos^{-1} (-2)\)    (b)  \(\sin^{-1} 1\)    (c)  \(\tan^{-1} \left(-1\right)\)    (d)  \(\sin^{-1} \left(\dfrac{\sqrt{3}}{2}\right)\)    (e)  \(\cos^{-1} \left( \cos \dfrac{3\pi}{4} \right)\)    (f)  \( \tan^{-1} \left( \tan \dfrac{3\pi}{4} \right)\)  

3. Find the exact value of each expression in radians. If there is no value, write undefined.   SOLUTION

 (a)  \(\cos^{-1} \left(-\frac{1}{2} \right)\)     (b)  \( \tan^{-1} 1\)      (c)  \(\sin^{-1} \left(\frac{\sqrt 2}{2}\right)\)   (d)   \(\sin^{-1} \left(\sqrt{3}\right)\)    (e)  \(\cos^{-1} \left( \cos \dfrac{7\pi}{6} \right)\)    (f)  \(\tan^{-1} \left( \tan \dfrac{5\pi}{4} \right)\)

4.  Find the exact value of each expression.   SOLUTION

(a)  \( \cos \left[ \sin^{-1}\left( \frac{\sqrt 2}{3}\right)\right] \)     (b)  \(\tan \left[ \cos^{-1}\left( -\frac{1}{3}\right)\right]\)

5. Find the exact value of each expression.    SOLUTION

(a)  \(\tan \left[ \cos^{-1}\left( \frac{2}{3}\right)\right] \)      (b)  \(\sin \left[ \tan^{-1}\left(- \frac{12}{5}\right)\right]\)

6. Find the exact value of each expression.    SOLUTION

 (a)  \(\sec \left[ \tan^{-1}\left( -\frac{1}{4}\right)\right] \)      (b)  \(\cos \left[ \sin^{-1}\left( \frac{15}{17}\right)\right]\)