Double-angle and Half-angle Formulas

Lecture video on Double-angle and Half-angle Formulas

 Examples:

 1. Find the exact value of \(\sin \frac{\pi}{8} \).    SOLUTION

 2. Find the exact value of \(\sin 15^\circ\).     SOLUTION

 3. Find the exact value of \( \cos \left(2 \sin^{-1}\frac{3}{5}\right)\).   SOLUTION

 4. If \( \cos \alpha = \frac{5}{13}, \frac{3\pi}{2}< \alpha < 2\pi \). Find the exact value of \( \tan (2\alpha)\).   SOLUTION

 5. If If \(\sin \theta = -\frac{\sqrt 3}{3},  \frac{3\pi}{2}< \theta < 2\pi \). Find the exact value of \( \cos \frac{\theta}{2}\).    SOLUTION

  

 Establish each identity.

1. \(\displaystyle{\frac{\cot \theta - \tan \theta}{\cot \theta + \tan \theta} = \cos (2\theta)}\)   SOLUTION

2. \(\displaystyle{\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} - \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = 2\tan (2\theta)}\)   SOLUTION

3. \(\displaystyle{\frac{\cos (2\theta)}{1 + \sin (2\theta)} = \frac{\cot \theta - 1}{\cot\theta + 1}}\)   SOLUTION

4. \(\displaystyle{\cos^4 \theta - \sin^4 \theta = \cos(2\theta)}\)   SOLUTION

5. \(\displaystyle{\cot(2\theta) = \frac{1}{2}(\cot \theta - \tan \theta)}\)   SOLUTION