The Complex Plane; De Moivre's Theorem

Lecture video on the complex plane and De Moivre's Theorem

 

1. Write the Complex Number in Polar Form.    SOLUTION 

(a) \( z= -2 + 2i \)       (b) \(z=\sqrt 3 - i \)

 

2. Let \( \displaystyle z = 3 \left( \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}  \right),  w=6 \left(\cos\frac{\pi}{6} + i \sin \frac{\pi}{6} \right)\).  Find (a) \( \displaystyle zw\), and (b) \( \displaystyle \frac{z}{w}\).   SOLUTION

 

3. Let \( \displaystyle z = 2 \left( \cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}  \right),  w=8 \left(\cos\frac{\pi}{4} + i \sin \frac{\pi}{4} \right)\).  Find (a) \( \displaystyle zw\), and (b) \( \displaystyle \frac{z}{w}\).    SOLUTION

  

4. Write the expression in the standard form \( a+bi\).    SOLUTION

\(\displaystyle \left[ \sqrt 3 (\cos 10^\circ + i \sin 10^\circ) \right]^6 \)

  

5. Write the expression in the standard form \(a+bi\).    SOLUTION

 \( \displaystyle \left[ \sqrt 5 \left(\cos \frac{5\pi}{16}+ i \sin \frac{5\pi}{16}\right) \right]^4\)