Full Name: \qquad

1. Evaluate each of the following indefinite integrals.
(a) Since we have an odd power of $\cos (\cdots)$, we can use $\cos ^{2} \theta+\sin ^{2} \theta=1$ to reduce the power of $\cos (\cdots)$ until it is simply a single power of cosine. As such, we can let u equal to $\sin (\cdots)$ and let substitution simplify our function's expression to the point where finding $F(x)$ can be a direct application of our integration facts.
(b) We can resolve the oddity of the angle being 3θ (instead of just θ) by simply letting this be x equal 3θ, computing $d x$, and substituting accordingly. At this point, the problem is similar to (1), but with an odd power of $\sin (\cdots)$.
(c) Since we have an even power of $\sec (\cdots)$, we can use $1+\tan ^{2} \theta=\sec ^{2} \theta$ to reduce the power of $\sec (\cdots)$ until it is of degree two. At that point, letting u equal $\tan (\cdots)$ will accommodate substitution in such a way that our original function will simplify into a form that will directly apply to our integration facts.
(d) Similar to (c), although please note that we will have to multiply $1+u^{2}$ by itself twice. Please recall the fact that $\left(1+u^{2}\right)=\left(1+u^{2}\right)\left(1+u^{2}\right)$, which will demand distributing the terms of the first polynomial about the terms of the second.
(e) Similar to (b) to resolve the angle of $3 x$ (just let θ equal $3 x$, compute $d \theta$, and substitute). From there, the exercise is similar to (c).
(f) Since we have an odd power of $\tan (\cdots)$, we can use $1+\tan ^{2} \theta=\sec ^{2} \theta$ to reduce the power of $\tan (\cdots)$ until there is only one factor remaining. At that point, letting u equal $\sec (\cdots)$ will accommodate substitution in such a way that our original function will simplify into a form that will directly apply to our integration facts.
(g) Similar to (b) to resolve the $2 x$. From there, the exercise is similar to (f), albeit with $1+\tan ^{2} \theta=\sec ^{2} \theta$ needing to be utilized twice. As such, please recall that $\left(u^{2}-1\right)^{2}$ is equal to $\left(u^{2}-1\right)\left(u^{2}-1\right)$, which demands distributing.
(h) With only even powers of both $\sin (\cdots)$ and $\cos (\cdots)$, we must utilize the half-angle formulas:
$\sin ^{2} \theta=\frac{1}{2}\left(1-\cos ^{2}(2 \theta)\right)$; and $\cos ^{2} \theta=\frac{1}{2}\left(1+\cos ^{2}(2 \theta)\right)$. These formulas can be repeatedly applied to reduce the degree of each $\sin (\cdots)$ and $\cos (\cdots)$ factor until they are of degree one. Be certain to remember to double the angle when applying these formulas!
(i) Similar to (h).
(j) Similar to (h).
