Full Name:

- 1. Evaluate each of the following indefinite integrals.
 - (a) Since we have an odd power of $\cos(\dots)$, we can use $\cos^2 \theta + \sin^2 \theta = 1$ to reduce the power of $\cos(\dots)$ until it is simply a single power of cosine. As such, we can let u equal to $\sin(\dots)$ and let substitution simplify our function's expression to the point where finding F(x) can be a direct application of our integration facts.
 - (b) We can resolve the oddity of the angle being 3θ (instead of just θ) by simply letting this be x equal 3θ , computing dx, and substituting accordingly. At this point, the problem is similar to (1), but with an odd power of $\sin(\cdots)$.
 - (c) Since we have an even power of $\sec(\dots)$, we can use $1 + \tan^2 \theta = \sec^2 \theta$ to reduce the power of $\sec(\dots)$ until it is of degree two. At that point, letting u equal $\tan(\dots)$ will accommodate substitution in such a way that our original function will simplify into a form that will directly apply to our integration facts.
 - (d) Similar to (c), although please note that we will have to multiply $1 + u^2$ by itself twice. Please recall the fact that $(1 + u^2) = (1 + u^2)(1 + u^2)$, which will demand distributing the terms of the first polynomial about the terms of the second.
 - (e) Similar to (b) to resolve the angle of 3x (just let θ equal 3x, compute $d\theta$, and substitute). From there, the exercise is similar to (c).
 - (f) Since we have an odd power of $\tan(\dots)$, we can use $1 + \tan^2 \theta = \sec^2 \theta$ to reduce the power of $\tan(\dots)$ until there is only one factor remaining. At that point, letting u equal $\sec(\dots)$ will accommodate substitution in such a way that our original function will simplify into a form that will directly apply to our integration facts.
 - (g) Similar to (b) to resolve the 2x. From there, the exercise is similar to (f), albeit with $1 + \tan^2 \theta = \sec^2 \theta$ needing to be utilized twice. As such, please recall that $(u^2 1)^2$ is equal to $(u^2 1)(u^2 1)$, which demands distributing.
 - (h) With only even powers of both $\sin(\dots)$ and $\cos(\dots)$, we must utilize the half-angle formulas: $\sin^2 \theta = \frac{1}{2} (1 - \cos^2(2\theta));$ and $\cos^2 \theta = \frac{1}{2} (1 + \cos^2(2\theta)).$ These formulas can be repeatedly applied to reduce the degree of each $\sin(\dots)$ and $\cos(\dots)$ factor until they are of degree one. Be certain to remember to double the angle when applying these formulas!
 - (i) Similar to (h).
 - (j) Similar to (h).