Full Name: \qquad

1. Find the average value of the function on the given interval.
(a) Recall that computing the average value of a function involves the formula $\frac{1}{b-a} \int_{a}^{b} f(x) d x$. In effect, this involves finding the height of a rectangle that, on the interval $[a, b]$, would define an area equal to the area between the graph of $f(x)$ and the x-axis. This part is a direct application of the formula.
(b) Similar to (a).
(c) Similar to (a), with the additional observation that in order to find $F(x)$, we will need to use u-substitution.
(d) Similar to (c).
2. Note that $t=0$ occurs at $9: 00$. This will be important in order to determine the bounds correctly. Otherwise, we are simply using the average value formula.
3. Similar to 2 . Note that this exercise also asks for when the volume is equal to this amount. This will involve setting the function for volume, namely $V(t)$, equal to the average value. Such a value (or values) will certainly exist since V is a continuous function, so the graph of the function cannot "jump" its average value.
