Full Name: \qquad

1. Compute each of the following integrals.
(a) Are $\sec ^{2} t$ and $\tan t$ related by way of derivative? If so, which needs to be our u in order that the other be within the resulting expression for $d u$?
(b) We don't have a $\sin (\cdots)$ to pair with our $\cos (\cdots)$ through a relationship by way of derivative, but can we pair $e^{x}+2$ and e^{x} through such a relationship?
(c) The polynomials $1+x^{4}$ and x^{3} differ by one degree. Perhaps there is a derivative relationship here? Which one needs to be our u in order that the other be within the resulting expression for $d u$?
(d) The polynomials $2 x^{3}$ and $24 x^{2}$ differ by one degree. Perhaps we could use derivative to relate them?!
(e) The polynomials $12 x-10$ and $3 x^{2}-5 x$ differ by one degree. Perhaps there is a derivative relationship here?
(f) Note the polynomials $2 x$ and $1+x^{2}$.
(g) We have a $\sin (\cdots)$ to pair with our $\cos (\cdots)$ through a relationship by way of derivative. One needs to play the role of u and the other will result in the expression of $d u$. Test to see which candidate for u will make for a cleaner substitution.
(h) What if we rewrote the expression of the function inside our integral as $(\ln x)^{3} \frac{1}{x} d x$. Perhaps this makes it more apparent what we need u to be?!
(i) This (and the next two examples) are a subtle application of u-substitution. Do recall that any polynomial of the form $m x+b$ has a derivative of m. This can be useful, since letting $u=m x+b$, it follows that $d u=m d x$.
(j) See hint for (i) above.
(k) See hint for (i) above. Add the additional observation that we need to compute $F(b)-F(a)$. In short, we can forget the bounds until we have our $F(x)$ function (as we did in every problem previous from this sheet). Once we have our $F(x)$, we simply plug in 5 , plug in 0 , and subtract the results.
