
A	Preliminary	Evaluation	of	the	VisAD	Visualization
Toolkit

These	materials	were	developed	with	the	support	of	the	Shodor	Education	Foundation,	923	Broad	Street,	Durham,	NC
227705	and	the	National	Science	Foundation	Grant	DUE-0127488.

Prepared	by:	
Mike	Murphy	
Undergraduate,	Department	of	Computer	Science	
Clemson	University	

For:	
Shodor	Educational	Foundation,	Inc.

Originally	completed	as	a	working	draft	on	16	June	2003.

Abstract

VisAD	is	an	open-source	visualization	component	toolkit	for	the	Java	programming	language.	This	toolkit	provides	both
two-	and	three-dimensional	visualization	support,	automatic	support	for	panning	and	zooming	images,	and	a	flexible
data	structure	hierarchy.	Support	for	distributed	architectures	is	available	"out	of	the	box,"	as	are	coordinate
frameworks	for	a	number	of	different	visualization	types.	In	addition,	the	package	is	designed	to	be	as	general	as
possible,	in	order	to	support	many	different	problem	domains.	Because	of	the	design	of	the	Java	language,	VisAD
applications	may	be	designed	to	be	platform-independent.	Thus,	VisAD	has	significant	possibilities	for	designing
portable	and	scalable	scientific	visualization	packages.

Unfortunately,	the	documentation	for	VisAD	is	somewhat	nebulous	and	disconnected,	resulting	in	a	very	steep	learning
curve.	The	large	number	of	Java	classes	in	the	package	further	complicates	comprehension,	especially	when	taken	in
concert	with	the	frequently	missing,	incomplete,	or	incorrect	component-level	documentation.	Furthermore,	VisAD
relies	on	Sun	Microsystems'	Java3D	technology,	which	is	only	supported	on	a	limited	subset	of	Java-enabled	platforms.
These	issues	present	significant	concerns	for	designing,	implementing,	and	supporting	VisAD	applications.

Table	of	Contents

1.	 Introduction	to	VisAD	and	the	Demonstration	Evaluation
2.	 Background	Information	on	VisAD

History	of	VisAD
Technological	Basis
VisAD	Consumers

3.	 Demonstration	Evaluation	Design	and	Implementation	Procedure
Objectives	of	the	Evaluation
Design	of	the	Visualization
Implementation	in	Java

4.	 Results	of	the	Evaluation
5.	 Conclusions

Overall	Impressions
Technological	Considerations
Support	Issues

6.	 References
7.	 Selected	VisAD	Resources
8.	 Inventory	of	Potential	Alternative	Open-Source	Tools

Introduction

The	Visualization	for	Algorithm	Development,	or	VisAD,	visualization	component	package	is	a	collection	of	Java	classes
that	provide	a	Java	developer	with	a	portable	component	library	to	support	scientific	visualizations.	VisAD	is	an	open-
source	toolkit,	released	under	the	Free	Software	Foundation's	GNU	Lesser	General	Public	License	and	available	at	no
cost.

VisAD	is	one	of	several	potential	toolkits	available	to	the	Shodor	Educational	Foundation	for	use	in	developing	client-
side	scientific	visualization	packages	for	the	K-12	and	collegiate	education	communities.	Because	of	the	cross-platform
nature	of	Java,	VisAD	is	an	exceptionally	strong	candidate	for	consideration	as	a	base	toolkit	for	these	types	of
visualizations.	The	purpose	of	this	evaluation	is	to	provide	a	preliminary	analysis	of	the	issues	that	will	be	present	in
using	VisAD	as	a	basis	for	educational	visualizations.

This	evaluation	focuses	on	the	effort	required	to	understand	the	VisAD	toolkit	and	implement	a	visualization	solution	on
top	of	that	toolkit.	In	addition,	this	evaluation	attempts	to	determine	the	ballpark	time	horizon	needed	to	construct	a
visualization	system	on	top	of	VisAD.	This	evaluation	does	not	provide	a	conclusive,	in-depth	evaluation	of	VisAD,	as	this
is	intended	to	be	a	preliminary	evaluation	to	determine	if	further	exploration	is	warranted.	In	addition,	the	majority	of
the	technical	details	of	VisAD	are	beyond	the	scope	of	this	document.

file:///home/mike/Downloads/visad-report.html#intro
file:///home/mike/Downloads/visad-report.html#bg
file:///home/mike/Downloads/visad-report.html#bg-history
file:///home/mike/Downloads/visad-report.html#bg-tech
file:///home/mike/Downloads/visad-report.html#bg-projects
file:///home/mike/Downloads/visad-report.html#proc
file:///home/mike/Downloads/visad-report.html#proc-objective
file:///home/mike/Downloads/visad-report.html#proc-design
file:///home/mike/Downloads/visad-report.html#proc-impl
file:///home/mike/Downloads/visad-report.html#results
file:///home/mike/Downloads/visad-report.html#concl
file:///home/mike/Downloads/visad-report.html#concl-overall
file:///home/mike/Downloads/visad-report.html#concl-tech
file:///home/mike/Downloads/visad-report.html#concl-support
file:///home/mike/Downloads/visad-report.html#ref
file:///home/mike/Downloads/visad-report.html#resource
file:///home/mike/Downloads/visad-report.html#inv

Background

History	of	VisAD

VisAD	was	originally	developed	from	code	taken	from	the	open-source	Vis5d	toolkit,	which	was	itself	based	on	another
open-source	visualization	tool	called	McIDAS	(Hibbard,	2000).	Development	of	VisAD	was	pioneered	by	staff	of	the
Space	Science	and	Engineering	Center	of	the	University	of	Wisconsin-Madison.	Additional	contributions	were	made	by
the	Unidata	Program	Center,	National	Center	for	Supercomputing	Applications	at	the	University	of	Illinois	at	Urbana-
Champaign,	Australian	Bureau	of	Meteorology,	and	the	National	Center	for	Atmospheric	Research	(Hibbard,	2003).

VisAD	has	been	released	under	the	GNU	Lesser	General	Public	License	(LGPL),	which	means	that	applications	that	use
it	need	not	be	licensed	under	the	GNU	General	Public	Licence	(GPL),	although	the	LGPL	does	have	some	restrictions	of
its	own.

Technological	Basis

The	uniqueness	of	VisAD	arises	from	its	basis	in	the	Sun	Microsystems	Java	programming	language,	which	is	designed
to	provide	easy	cross-platform	portability.	In	addition,	VisAD	is	not	an	application	builder	or	graphical	design	tool;
rather,	it	is	a	suite	of	Java	classes	that	can	be	assembled	and	manipulated	to	perform	various	different	visualizations
(Hibbard,	2003)

VisAD	is	comprised	of	code	written	entirely	in	Java.	The	standard	packages	that	ship	with	Java	are	designed	for	2-
dimensional	graphics	work.	To	support	3-dimensional	visualizations,	VisAD	relies	on	the	Java3D	package	from	Sun
(Hibbard,	2003).	At	present,	the	Java3D	package	is	available	for	the	Sun	Solaris,	Microsoft	Windows,	Linux,	IBM	AIX,
HP-UX,	and	SGI	IRIX	operating	systems	(Sun,	2003a-b).	Notably	absent	from	that	list	is	Apple	Mac	OS	X,	although	it	is
widely	rumored	on	the	Internet	that	the	Linux	version	of	Java3D	runs	on	OS	X.	That	does	appear	to	be	the	case,	as	long
as	one	of	the	XFree86	ports	is	installed	on	top	of	OS	X	(Blackdown,	2003).

VisAD	Consumers

Several	major	visualization	projects	are	built	on	top	of	VisAD,	many	by	various	government	and	educational	sector
entities.	Included	among	these	projects	are	the	University	Centers	for	Atmospheric	Research	Integrated	Data	Viewer,
which	provides	visualizations	for	a	number	of	meteorological	data	sets.	Also,	the	University	of	Wisconsin	has	released	a
beta	version	of	VisBio,	which	is	designed	to	visualize	4-dimensional	multispectral	data	from	biological	sources.	There
are	numerous	other	smaller	VisAD-based	projects	available	from	the	official	VisAD	website	(Hibbard,	2003).

Design	and	Implementation	Procedure

Evaluation	Objectives

The	principal	objective	in	this	evaluation	experiment	was	to	determine	the	level	of	complexity	associated	with	using
VisAD	as	a	platform	upon	which	to	build	a	custom	visualization	system.	In	order	to	focus	as	much	attention	as	possible
on	VisAD,	a	simple	experimental	application	was	needed.

Design	of	the	Evaluation

A	relatively	simple	input	data	file	format	was	found	in	the	National	Weather	Service's	"F-6"	climate	data	form.	These
files	were	simple	to	understand	and	relatively	easy	to	parse.	Individual	data	files	from	the	National	Weather	Service
Forecast	Office	in	Greenville-Spartanburg	(NWSFO	GSP,	2003)	were	downloaded	and	used	as	input	to	the	experimental
application.

In	order	to	accomodate	the	variable	number	of	days	in	a	month	(28-31),	as	well	as	the	Missing	data	values	from	the	F-6
file,	a	linked	grid	structure	was	designed.	This	structure	provided	a	mechanism	to	support	a	variable	number	of	data
records	with	a	fixed	number	of	fields.	To	store	the	actual	data	into	this	structure,	file	parsing	code	was	designed,	using
standard	Java	file	input	components.

From	the	linked	grid	structure,	the	data	were	available	to	the	VisAD	components	for	rendering.	The	remainder	of	the
design	was	completed	as	the	VisAD	portion	of	the	project	was	implemented,	closely	following	the	VisAD	tutorial
examples.

Java	Implementation

Implementation	of	the	experimental	application	began	with	the	implementation	and	testing	of	the	linked	grid	structure.
Once	the	linked	grid	was	completed,	the	file	reading	component	was	prepared,	and	the	file	data	were	stored	into	the
grid	structure.	Implementation	then	shifted	to	a	combination	of	design	and	implementation	using	the	actual	VisAD
components.

Following	the	VisAD	tutorial	online,	the	VisAD	data	structure	components	were	assembled	from	the	rather	large	VisAD
component	library.	Trial	and	error	was	used	to	map	the	raw	data	to	the	proper	structural	locations,	along	with
appropriate	units.	Following	the	data	structure	layout,	several	hours	of	trial	and	error	were	needed	to	link	the	data	to
the	rendering	components.

Following	the	completion	of	the	data	linking,	rendering	and	displaying	the	resulting	visualization	was	automatic.	VisAD

handled	the	scaling	and	display	of	the	final	graphic	with	very	little	programmer	intervention.

Results	of	the	Evaluation

The	implementation	of	the	experimental	application	was	not	completely	straightforward.	A	major	issue	was	encountered
during	the	first	attempt	to	parse	the	data	file,	using	Java	components	supplied	by	Sun	Microsystems.	After	significant
troubleshooting,	it	was	determined	that	the	JavaDoc	documentation	for	the	component	in	question,	coupled	with	that
component's	implementation,	presented	an	ideal	model	of	divergence.	Thus,	a	new	data	parsing	algorithm	had	to	be
written	from	scratch,	which	resulted	in	a	setback	of	just	over	one	day.

Apart	from	Java-related	issues,	the	only	other	major	difficulty	in	implementing	the	experimental	application	was	the
VisAD	object	model.	Several	trial-and-error	procedures	were	required	to	obtain	a	functioning	visualization,	each	of
which	required	several	hours	to	achieve	relatively	small	amounts	of	progress.

Once	the	application	was	completed,	the	result	was	a	space	curve	plotted	from	the	high	and	low	temperatures	for	each
day	of	the	month.	VisAD	handled	the	majority	of	the	rendering	of	this	space	curve	automatically,	although	some	minor
tweaks	were	needed	to	adjust	the	axes	and	labels.	VisAD	provided	visualization	canvas	resizing,	interactive	panning	and
zooming,	and	interactive	visual	position	identification;	all	of	these	features	were	available	without	any	additional
programming.

Overall,	this	application	required	2	half-time	(20	hours)	developer	weeks,	with	1	developer	working	on	the	project,	to
implement.	Prior	to	implementation,	another	2	half-time	developer	weeks	were	required	to	study	the	object	model	and
VisAD	tutorials,	in	order	to	gain	the	most	fundamental	of	understanding	of	VisAD.

Conclusions

Overall	Impressions

VisAD	is	a	large	and	complex	tookit,	a	product	of	what	appears	to	be	an	iterative	and	incremental	development	process.
As	such,	VisAD	provides	considerable	power	at	the	expense	of	significant	complexity.	This	visualization	toolkit	has	a
number	of	potential	benefits;	however	it	also	has	a	number	of	issues	that	present	significant	concerns.

Design	and	support	issues	include	the	nature	of	the	VisAD	toolkit	itself,	as	well	as	its	reliance	on	the	Java3D	toolkit,
which	is	not	fully	supported	on	all	Java-enabled	platforms.	However,	even	with	these	issues,	there	are	some	applications
that	will	benefit	from	the	cross-platform	capabilities	of	VisAD	on	the	platforms	on	which	it	is	supported.	Thus,	each
project	will	have	to	be	evaluated	independently,	to	determine	if	VisAD	is	the	appropriate	toolkit	to	satisfy	project
requirements.

Technological	Considerations

The	key	benefit	to	VisAD	is	its	Java	foundation,	which	makes	VisAD	applications	cross-platform,	as	long	as	development
is	done	in	pure	Java.	This	Java	requirement	presents	two	key	concerns.	First,	as	was	demonstrated	with	this
experimental	application,	there	are	portions	of	the	Java	programming	language	that	behave	differently	than	the
documentation	would	suggest.	On	top	of	the	documentation	issues,	truly	portable	VisAD	applications	may	require	that
working	code	in	other	languages	be	either	re-written	in,	or	mechanically	converted	to,	Java.

Because	of	the	complexities	already	inherent	to	VisAD,	the	additional	usage	of	Java	native	methods	on	top	of	the	Java
visualization	application,	would	incrase	the	complexity	of	the	overall	visualization	significantly.	In	addition,	assuming
that	the	Java	native	method	calls	are	truly	portable	across	platforms,	the	usual	portability	issues	of	C(++)	or	Fortran
would	nullify	most	of	the	benefits	of	using	VisAD	in	the	first	place.	Some	languages,	especially	later	Fortran	standards,
may	not	even	be	supported	on	all	platforms.	These	issues	would	indicate	that	VisAD	would	not	be	the	tool	of	choice	for
designing	single-platform	visualizations	from	an	existing	non-Java	code	base;	rather,	VisAD	would	be	more	suited	to
purpose-built	visualizations	to	be	distributed	to	consumers	with	a	wide	array	of	hardware	platforms	and	operating
systems,	such	as	K-12	educational	institutions.

A	second	issues	arises	from	the	large	hierarchy	of	objects	that	must	be	assembled	in	order	to	create	a	VisAD
application.	Trial	and	error	often	is	needed	to	determine	the	exact	behavior	of	VisAD	components,	because	component-
level	documentation	is	lacking.	Although	the	tutorials	are	somewhat	helpful,	they	are	often	nebulous	and	require
several	readings	to	comprehend.	Thus,	it	is	likely	that	a	VisAD-based	application	will	require	a	significant	developer
time	investment,	especially	if	the	developer	is	using	VisAD	for	the	first	time.

Finally,	VisAD	is	a	component	toolkit,	not	an	application	builder.	Visualizations	are	built	in	the	Java	programming
language	by	assembling	object	components	provided	by	the	VisAD	package.	Working	at	the	code	level	is	not	intuitive
for	the	developer,	and	drawing	connections	between	the	Java	classes	and	rendered	result	is	extremely	difficult	at	times.
This	factor	is	a	large	part	of	the	reason	that	VisAD	applications	will	be	slow	to	design	and	implement.

Support	Issues

Apart	from	the	actual	design	and	implementation	issues	inherent	with	using	VisAD,	the	package	also	has	several
attributes	that	will	complicate	end-user	technical	support.	Not	least	of	these	issues	is	reliance	on	the	Java3D	toolkit,
which	has	limited	platform	support.	For	those	platforms	for	which	Java3D	is	available,	it	must	be	installed	on	top	of
(and	separately	from)	the	regular	Java	Virtual	Machine	package.	This	increases	the	number	of	prerequisite	installations
that	the	user	must	perform,	and	each	of	these	installations	is	platform-specific,	so	it	will	be	difficult	to	provide	good
generic	instructions.

Once	the	Java	base	components	are	in	place,	the	user	must	also	install	VisAD	(or	it	must	be	included	with	a	visualization
application)	and	the	visualization	application	itself.	This	installation	could	present	a	serious	support	issue	because	Java
requires	that	the	CLASSPATH	variable	be	set	properly,	or	else	the	Java	runtime	will	complain	of	missing	classes.	The
only	known	workaround	to	this	support	problem	is	to	provide	platform-tailored	installers,	which	would	result	in	a
resurfacing	of	the	platform	portability	problem	that	Java	is	supposed	to	solve.

References

Blackdown,	2003:	Java3D	(TM)	1.3	README	file	for	Linux/OpenGL.
					http://www.blackdown.org/java-linux/java2-status/README-3D13

Hibbard,	W.,	2000:	The	VisAD	Java	Component	Library	Developers	Guide.
					http://www.ssec.wisc.edu/~billh/guide.html

Hibbard,	W.,	2003:	VisAD	Home	Page.
					http://www.ssec.wisc.edu/~billh/visad.html

NWSFO	GSP,	2003:	Past	Weather.	National	Weather	Service	Forecast	Office,
					Greenville-Spartanburg,	SC.	http://www.erh.noaa.gov/gsp/climate/climate.htm

Sun	Microsystems,	2003a:	Java	3D	1.3.1	-	Download.
					http://java.sun.com/products/java-media/3D/download.html

Sun	Microsystems,	2003b:	Java	3D	API	on	Other	Platforms.
					http://java.sun.com/products/java-media/3D/ports.html

Selected	VisAD	Resources

VisAD	Home	Page
VisAD	Tutorial

Inventory	of	Potential	Alternative	Toolkits

This	partial	list	of	alternative	toolkits	is	copied	verbatim	from	the	author's	software	inventory	of	14	December	2002.

GMV	-	General	Mesh	Viewer
3-D	scientific	visualization	tool	for	viewing	2-D	or	3-D	mesh	visualizations.
Language:	?	Appears	to	be	closed-source
License:	Binary	freeware
http://laws.lanl.gov/XCM/gmv/GMVHome.html

MeshTV
3-D	mesh	visualization	viewer	with	user	interface	components.
Language:	not	exactly	known,	but	probably	C	or	C++
License:	free	and	source	available,	but	in	the	COPYRIGHT	file	included,	there
									is	a	notation	that	Laurence	Livermore	National	Labs	must	be	notified
									before	software	can	be	commercialized.
http://www.llnl.gov/bdiv/meshtv/

GEMPAK
Developed	between	the	NWS	and	the	universities	participating	in	UNIDATA,
GEMPAK	provides	much	of	the	visualization	eventually	sought	by	my	project.
The	difference	is	that	GEMPAK	is	closed-source	and	only	available	to
universities,	although	it	is	free.	Also,	it	appears	that	some	components	of
the	National	Weather	Service's	AWIPS	system	have	been	included	in	this
system.	It	may	be	useful	to	obtain	a	copy	of	this	software	just	to	see	what
the	AWIPS	components	do.
Language:	?	(appears	to	be	closed-source)
License:	free	but	apparently	cannot	be	redistributed
http://www.unidata.ucar.edu/packages/gempak/index.html

Grid	Analysis	and	Display	System	(GrADS)
This	tool	has	been	popularized	in	the	Bulletin	of	the	American	Meteorological
Society	as	a	generic	visualization	engine.
Language:	?	(its	scripting	language	is	"FORTRAN-like")
License:	GrADS	Open	Source	license.	Source	available	but	need	permission	to
									redistribute.
http://grads.iges.org/grads/grads.html

Vis5d+
An	open-source	visualization	tool.	Used	in	some	radar	research	recently
published	in	the	Bulletin	of	the	American	Meteorological	Society.
Language:	Looks	to	be	a	mix	of	C(++)	and	FORTRAN-77

http://www.ssec.wisc.edu/~billh/visad.html
http://www.geogr.uni-jena.de/~p6taug/visad/tutorial/index.html

License:	GPL	v.2
http://vis5d.sourceforge.net/
***	potential	problem:	Vis5d	relies	on	a	licensed	underlying	codebase	with
more	restrictive	licenses.	Work	is	underway	to	convert	Vis5d	such	that	it
uses	GTK	instead;	however,	we	could	potentially	find	ourselves	in	the
position	of	having	to	do	some	of	that	conversion	work	(I	doubt	the	Vis5d
project	people	would	mind,	however).

OpenDX
An	open-source	visualization	tool	based	on	a	visualization	system	originally
developed	by	IBM.	Probably	needs	to	be	explored	further,	as	they	show	some
pretty	pictures	on	the	site.	Original	IBM	system	was	called	Visualization
Data	Explorer	(VDE).
Language:	?
License:	IBM	Public	License
http://www.opendx.org/

Open	CASCADE
Another	open-source	3D	visualization	system.	This	system	consists	of	a	set
of	libraries	designed	to	operate	more	or	less	alone,	or	with	other	(especially
closed	source)	code.
Language:	C++
License:	Open	CASCADE	Public	License
http://www.opencascade.com/products/occ/

