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Abstract

Cloud services that provide virtualized computational
clusters present a dichotomy of systems management chal-
lenges, as the virtual clusters may be owned and admin-
istered by one entity, while the underlying physical fabric
may belong to a different entity. On the physical fabric,
scalable tools that “push” configuration changes and soft-
ware updates to the compute nodes are effective, since the
physical system administrators have complete system access.
However, virtual clusters executing atop federated Grid sites
may not be directly reachable for management purposes,
as network or policy limitations may prevent unsolicited
connections to virtual compute nodes. For these systems,
a distributed middleware solution could permit the compute
nodes to “pull” updates from a centralized server, thereby
permitting the management of virtual compute nodes that are
inaccessible to the system administrator. This paper com-
pares both models of system administration and describes
emerging software utilities for managing both the physical
fabric and the virtual clusters.

1. Introduction

Through the use of virtualization technology, cloud com-
puting systems provide a mechanism by which large-scale
computational resources can be provided to domain scien-
tists, freeing individual scientific users from the need to
purchase and maintain physical systems and infrastructure.
Domain scientists can access and use these cloud systems
via grid computing interfaces, thereby allowing individual
physical sites to support different user groups. An im-
mediate challenge results from this resource sharing, due
to differences in software requirements between scientific
applications. Cloud sites must either provide a mechanism to
install a wide range of libraries and applications for different
user groups, or users must adapt their applications to the
environments made available on the computational sites.

One possible solution to this software provisioning prob-
lem is to utilize Virtual Organization Clusters [1] to separate
the virtualized cloud systems presented to end users from the

underlying physical hardware. Grid systems designed around
the Virtual Organization Cluster (VOC) Model provide a
separate administrative domain for each Virtual Organization
(VO), or group of affiliated users [2], thereby allowing each
VO to customize its software environment. VOC adminis-
trators can install software and set configuration policies
that are appropriate for the domain scientists they support,
without site-specific limitations imposed by the physical
fabric. Each VO is thus able to provide the software pack-
ages desired by its member scientists, while physical site
administrators are freed from maintaining different software
sets for each group of end users. Figure 1 presents such a
use case.

Figure 1. Virtual Organization member utilizing a Virtual
Organization Cluster

In order to make systems designed around the VOC Model
practical for both end users and physical fabric providers,
mechanisms must be available to configure and manage
both the cloud systems and the underlying physical fabric.
Although VOCs may be dynamically expanded and shrunk



in size, their core Virtual Machine (VM) images are designed
to be used for long time periods on the order of weeks,
months, or perhaps even years. These VOC compute node
images are neither ephemeral nor disposable; rather, they are
virtualized equivalents of physical hardware dedicated to a
specific scientific mission. Thus, management mechanisms
for VOCs must exist to reconfigure, update, and add software
to the images. Since VOCs are hosted on third-party physical
systems with unique site policies and network architectures,
there is no guarantee that the VO will be provided with
direct access to the VOC compute node image to make
post-deployment modifications, rendering traditional direct
administration techniques ineffective. Physical fabric sites,
in contrast, can be administered directly, since the physical
administrators have direct access to the hardware. Scalable
and flexible approaches must still be used, however, since
individual physical nodes will be in use at different times
as the sizes of individual VOCs change to respond to
computational load.

This paper presents two divergent mechanisms for system
administration, which are complementary when used to
manage cloud computing systems designed according to
the VOC Model. For management of the physical fabric,
a scalable application called Stoker [3] pushes configuration
changes to physical nodes via standard network transports.
VOCs are managed by the second system, an application
in the early design stage called Pulley, which periodically
requests configuration updates from a central server and
is designed to operate in situations where there is no
direct access to the systems being administered. Together,
these opposing mechanisms for systems management can
be utilized to configure, update, and maintain computational
clouds over long temporal periods.

The remainder of this paper is organized as follows:
Section 2 presents related work, after which section 3
provides a brief overview of the Virtual Organization Cluster
Model. Section 4 presents Stoker and discusses management
of the physical hardware, while section 5 is devoted to the
management of the VMs and the initial design of Pulley.
Test results of running Stoker are presented in section 6,
after which section 7 concludes and discusses future work.

2. Related Work

Virtualization of entire clusters was first proposed in [4],
and it has been subsequently realized using different models,
such as Globus Virtual Workspaces [5], [6], In-VIGO [7],
Dynamic Virtual Clustering [8], VMPlants [9], and Virtual
Clusters on the Fly [10]. Rapid re-provisioning of physical
systems, as an alternative to using virtualization technolo-
gies, has been studied in the Cluster-On-Demand (COD)
system [11]. Each of these models has focused on rapid
provisioning of virtual clusters with short lifespans, typically
on the order of a single job. As a result, reconfiguration and

on-going maintenance of long-lived virtual clusters has not
been studied, even though tools and techniques have long
been available for managing regular computational clusters
that run jobs directly on the hardware.

Post-installation configuration management is a feature of
rapid physical cluster construction tools such as ROCKS
[12] and OSCAR [13]. Software and configuration changes
can be made through several mechanisms, such as the
addition of ROCKS rolls [14], or the use of remote command
execution systems such as the Cluster Command and Control
Suite [15] or Tentakel [16] to push changes to the compute
nodes. Alternatively, nodes can be completely re-imaged
using a tool such as the System Installation Suite [17]. All
these “traditional” techniques are best suited for the man-
agement of physical systems within a single site. Moreover,
with the exception of the ability of the Cluster Command and
Control Suite to handle multiple individual clusters, these
tools tend to focus on batch management of entire systems
simultaneously, omitting fine-grained targeting of individual
systems.

Another mechanism for post-installation management of
systems is Cfengine [18], which utilizes a descriptive lan-
guage to configure autonomous agents. These agents com-
municate with a central policy server to effect configura-
tion changes via a convergent process [19] whereby each
machine tends to move toward a desired state. Although
Cfengine allows different groups of systems to be targeted by
specifying policies around system classes, it is still designed
around the concept of single-site management. Cfengine also
requires dedicated services and transports to operate, which
might cause difficulties when spanning grid sites.

The primary contribution of this paper is to identify the
challenges associated with maintaining long-lived virtual
clusters that are not tied to specific hardware systems, as well
as to document progress made to date on utilities to manage
these distributed systems. This work differs from previous
research by investigating scalable long-term management
techniques with a dynamic model of cluster virtualization
that does not require complete re-construction of the cluster
on a per-job basis.

3. Virtual Organization Cluster Model

The Virtual Organization Cluster Model [1], illustrated in
figure 2, specifies the design of both physical and virtual
systems that enable Virtual Organizations to run dedicated
clusters of virtual machines, termed Virtual Organization
Clusters (VOCs). Each VOC represents an isolated adminis-
trative domain, within which a VO has extensive control over
the choice of operating system, libraries, and scientific soft-
ware. Within the bounds of minor operational constraints,
described below, the VO also is able to configure the virtual
cluster as desired and set low-level operational and usage
policies.



Figure 2. A Virtual Organization Cluster hosted on a
physical cluster utilizing the Kernel-based Virtual Ma-
chine virtual machine monitor

VOCs are executed atop physical computing fabric made
available by affiliated organizations, and perhaps third par-
ties, over a standard grid computing platform such as the
Open Science Grid [20]. Each of these physical sites is
also an isolated Physical Administrative Domain (PAD),
managed independently from the VOCs it hosts. Figure 3
illustrates a single physical site hosting multiple VOCs. The
physical hosts, virtualization systems, network infrastruc-
ture, and shared Grid services comprise the PAD in this
example.

The VOC Model provides a means by which each VO
can have its own dedicated cluster and associated Virtual
Administrative Domain (VAD), as illustrated in figure 3.
Virtual Organization Clusters using this model are formed
from VMs that are either created at the physical site where
they are to be used, created by grid middleware (for example,
In-VIGO [7]), or manually transmitted to the physical site
by a VO administrator. Unlike systems that utilize one
virtual disk image per VM instance [5], [8], [10], VOCs
are explicitly designed to work with either one or two disk
image files: a single image representing the configuration
of a compute node, and an optional second image that
contains a cluster head node. All compute node VMs are
spawned from the single compute node image using a copy-
on-write mechanism that allows the original image file to be
read-only. The result of this design is that both disk space
and network bandwidth requirements are reduced, while
management of the VOC is simplified.

A major benefit of the VOC Model design is that few con-

straints are placed on the VM. The VO has great flexibility
in selecting the operating system and software environment
best suited to the requirements of its users. Of the few
constraints that do exist, the primary ones are as follows:

• Image Compatibility. The VM image must be in a
format usable by the Virtual Machine Monitor (VMM)
or hypervisor software in use at the physical site(s)
where the VOC will be executed.

• Architecture Compatibility. The operating system
running in the VM must be compatible with the system
architecture exposed by the VMM or hypervisor.

• Dynamic Reconfigurability. The guest system inside
the VM must be able to have certain properties, such
as its MAC address, IP address, and hostname, set at
boot time.

• Scheduler Compatibility. When only a single image
file is used with a shared scheduler provided by the
physical site, the scheduler interface on the VM must
be compatible with the shared scheduler.

For the purpose of discussing dynamic provisioning and
scheduling of jobs on VOCs, the single-image case is
simpler, since there is only one job queue to be maintained at
any location on the system. The implementation described
in this paper thus assumes that each VO provides only a
compute node image, which has the required scheduler client
installed and operable.

4. Management of Physical Machines

In order to instantiate Virtual Organization Clusters, un-
derlying physical hardware is needed to run virtualization
software and host the VOC nodes. While this hardware could
be owned by the Virtual Organizations themselves, a cloud
computing model would favor the use of specialized hosting
providers that make physical fabric resources available on a
grid system. Each hosting provider would thus be respon-
sible for the acquisition and maintenance of all the hard-
ware necessary to construct physical clusters, including the
computing systems, local storage, network systems, power
conditioning and distribution, and cooling infrastructure.
Physical site administrators would be responsible for local
site policies and maintenance tasks, but their administrative
responsibility would extend only to the physical fabric at
the specific site. Thus, each individual physical site would
be a separate administrative domain, known as a Physical
Administrative Domain (or PAD).

A simplifying assumption made about each physical site
is that physical resources are devoted exclusively to hosting
VOCs: no scientific jobs are executed directly on the hard-
ware. As a result, the software set required on each compute
node is minimal and consists of the host operating system,
virtualization applications, and any needed driver software
to support installed hardware. Standard networking tech-
nologies, such as the Dynamic Host Configuration Protocol



Figure 3. Two Virtual Organization Clusters on a single physical site

(DHCP) and Domain Name System (DNS), are employed
in a centralized manner to enable connectivity between
systems, while simultaneously maintaining the scalability of
the physical cluster as a whole. By centralizing host-specific
settings, such as the IP address and host name of each
compute node, management inside the PAD is simplified.

One issue that does arise when using standard networking
services is the replication of identical information across
different services. For example, if fixed IP and host name
assignments are to be made using DHCP, then the same
mapping of host names to IP addresses must be entered
into the DNS records for resolution of host information to
work correctly within the system. A solution to avoiding this
replication is to centralize the duplicate information, using
an external database such as a Lightweight Directory Access
Protocol (LDAP) server. Services utilizing the information in
the database are then configured to use the external database
directly, provided the services have the required integration
capability. Otherwise, the services are adapted, through the
use of middleware layers, to update their local configurations
from the centralized database upon request.

4.1. Stoker

Stoker is a scalable remote management tool, whose
overall architecture is shown in figure 4. Stoker differs
from prior management tools such as Tentakel [16] and the
Cluster Command and Control Suite [15] in that it can obtain
system information directly from a centralized database with
system grouping capabilities, thereby avoiding replication of
host information in a configuration file. Stoker also has an
extensible, modular design with three major components: the
warehouse(s), core, and actor(s). These components handle
retrieving contact information for a node or group of nodes,
spawning and joining actor threads, and performing some

type of action on the target nodes. Each component will be
covered in more detail in sections 4.1.1, 4.1.2, and 4.1.3.

Figure 4. Overview of Stoker

4.1.1. Stoker Warehouses. Stoker can use multiple data
sources or warehouses to gather data about target nodes.
Central to the warehouse data retrieval task is the concept
of a resolver. Resolvers take as input a logical node or group
name and return a data structure containing addressing infor-
mation potentially including, but not limited to, hostname(s),
IP address(es), and MAC address(es). Stoker’s grouping
feature allows machines to be organized into arbitrary groups
and subgroups for the convenience of the administrators.
Sample groups include: “all odd-numbered machines”, “all
machines with the Apache web server installed”, etc.

A separate resolver is required for each type of data
warehouse. Resolvers currently exist for LDAP databases,
MySQL databases, and regular configuration files. An ad-
ministrator wishing to implement a new resolver needs only
to write a small Python class that retrieves the information
from the warehouse and inserts it into a simple data structure
defined by Stoker.



4.1.2. Stoker Core. A design goal of the Stoker core was
to encapsulate the complexity inherent in a multi-threaded
application, thus allowing a system administrator to extend
or create, with minimal effort, new warehouses and actors
to meet his needs. The primary function of the core is to
invoke the resolver(s) and spawn an actor thread for each
target. The core then manages each thread, collecting any
output from the actor, and generates an activity report for
the user.

Since the core does not have a priori knowledge of
whether or not a user-supplied target is a single node
or a group of nodes, it must be flexible enough to han-
dle a situation in which the user inadvertently specifies
a target multiple times. For example, if a user spec-
ifies, “toggle SELinux enforcing state on webserver01,
all_apache_servers,” webserver01 may very well be a mem-
ber of the all_apache_servers group; however, the user
almost certainly did not intend to toggle the state of web-
server01 twice.

4.1.3. Stoker Actors. Stoker actors are analogous to Stoker
warehouses in the sense that they are (potentially) simple
scripts that perform a simple task at the direction of the core.
Actors execute in their own threads and have well-defined
data structures that specify all known information about a
single target. The actor’s task is to apply its argument, also
provided by the core, to its target. Potential actors include
such tasks as remote command invocation via SSH, ping,
Wake-on-LAN, and local (relative to the user’s machine)
command invocation. New actors are easily created by the
system administrator to perform new functions.

4.2. DHCP and DNS Middleware

When managing physical clusters, it is convenient to have
a single repository for all node-specific information. Unfor-
tunately, many software packages do not include support
for a centralized configuration repository, requiring instead
a product-specific configuration file. To eliminate needless
data duplication and possible inconsistencies between ser-
vices that share data, database-aware middleware was devel-
oped (illustrated in figure 5) using a Lightweight Directory
Access Protocol (LDAP) server as the data source. As a
proof of concept, two network services were adapted to use
this middleware: ISC dhcpd, a Dynamic Host Configuration
Protocol (DHCP) server; and dnsmasq, a Domain Name
System (DNS) server.

The middleware is implemented as a Python script that
accesses the LDAP database and writes a configuration file
for the given software package. This script is then integrated
with the service initialization scripts so that every time the
software package is started or restarted, the configuration
file will be regenerated from the LDAP database, ensuring
that any changes will be propagated throughout the system.

Figure 5. Automatic integration of Stoker with DHCP
and DNS services

5. Management of Virtual Machines

Unlike the physical fabric systems, which are comprised
of single, isolated sites, the Virtual Organization Clusters
potentially execute on arbitrary sites, or even across physical
sites. As a result, it is not practical to assume that virtual
machines will necessarily always be directly reachable, since
physical sites may be constructed using private networks
with Network Address Translation (NAT) used on routers
connecting the private networks to the commodity Internet.
Without complex arrangements for forwarding connections
to individual VOC nodes, the use of client-initiated trans-
ports like SSH is not feasible. As a result, configuration
tools that operate on a “push” model, such as Stoker, are
not suited for managing these virtual clusters.

An alternate system that can traverse NAT boundaries
automatically is in the initial design stages. This middle-
ware utility, called Pulley, will use a central database and
application server to publish virtual cluster node configu-
rations on the Internet. Client VMs will periodically poll
the application server using standard HTTP Web service
mechanisms. Since the polling requests will originate from
the VMs themselves, they will be able to traverse NAT and
firewall boundaries at the physical sites, without requiring
any additional software or services to be made available on
the physical fabric. This design is illustrated in figure 6.

Since Pulley is in a formative stage of design, the ex-
act mechanism of its management functionality is not yet
known. Two models of operation are planned for investiga-
tion. One of these possible architectures would be to adapt
Stoker actors to draw operational information directly from
the configuration database via middleware, instead of relying
on human system administrators to provide command input.
The second potential architecture would be to implement
a policy-based mechanism such as Cfengine, adapting the
agent-based system to operate across Grid sites via mid-
dleware protocols. It is even possible that a hybrid of both
architectures will be used in the final system.



Figure 6. Overview of Pulley

6. Stoker Test Results

In order to measure overhead created by the resolution
and threading management processes and to assess the
performance improvement of parallelizing the command
execution process, several tests were conducted using Stoker.
The first test, with results shown in figure 7, parallelized
a short-running /bin/hostname task. Parallel execution
was found to be of limited utility beyond 4–6 threads in
this case due to the extremely short runtime of the program
(≈ 0.001s) relative to the total time necessary to spawn a
thread and execute a remote command via SSH (≈ 0.225s).
This test was conducted on a low-latency network inside a
private computing cluster.
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Figure 7. Stoker performance on a low-latency 16-node
cluster when parallelizing a hostname job

The next test (figure 8) involved a much longer running
job: a ten-second process sleep that was engineered to
simulate the restart procedure of a network service. This
test was conducted on the same private, low-latency cluster
as the first test. Performance improvements were observed
up to the limit of one thread per target (16 nodes in this
case). It should be noted that no performance improvement
was measured for 8–15 threads.
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Figure 8. Stoker performance on a low-latency 16-node
cluster when parallelizing a 10-second sleep operation

Since the 10-second sleep procedure had a known run-
time, network and SSH overhead could be measured. As
shown in figure 9, these overheads generally decreased in
an absolute sense until 14 threads were utilized. Beyond
this point, the overhead of spawning new threads began to
increase. However, overhead as a percentage of the total
time remained constant until 16 threads, the limit for this
test, were utilized.
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Figure 9. Comparative overheads of network and SSH
with respect to the remote job being executed on a low-
latency 16-node cluster. The normalized overhead is
expressed as a percentage of the maximum observed
overhead, which occurred when the number of threads
was equal to 1. Relative overhead is expressed as the
percentage of network and SSH overhead present in
the total execution time of a 10-second sleep job.

To determine whether overheads would be more signif-
icant across a higher latency network, another 10-second
sleep test was conducted on 27 public laboratory worksta-
tions. Results of this test, summarized in figure 10, showed
improvements in performance as threads increased from 1
to 6. Performance improvements declined beyond 6 threads,
even through 27 machines were targeted with the 10-second
sleep job. After further testing, including manual execution
of the same job using shell scripts instead of Stoker, it was



determined that SSH authentication latency was increasing
as the number of simultaneous SSH processes was increased.
The root cause of this behavior was found to be serialization
of the SSH authentication requests resulting from the use
of a single Network File System (NFS) share for storing
the SSH keys used for authentication. Since the single NFS
server was also utilized for unrelated purposes, additional
latency was added to the authentication process. As shown
in figure 11, overhead as a percentage of total execution time
increased with increasing parallelism, effectively negating
the benefits of additional Stoker actor threads.
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Figure 10. Stoker performance on a high-latency group
of 27 public laboratory workstations
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Figure 11. Comparative overheads of network and SSH
with respect to the remote job being executed on a high-
latency 27-node group of public workstations.

7. Conclusions and Future Work

Virtual Organization Clusters have the potential to enable
the execution of long-lived clusters of virtual machines,
which may span Grid sites to make best use of available
physical fabric to provide cloud computing resources for e-
Science applications. Management of the individual physical
grid sites may be accomplished using scalable push-oriented

tools like Stoker, but management of the virtual clusters will
require a new mechanism that avoids imposing additional
requirements on the physical systems. A prototype of such
a system, called Pulley, will be the subject of future research
into distributed management of systems that are not directly
accessible.
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