
Virtual Organization Clusters

Michael A. Murphy, Michael Fenn, and Sebastien Goasguen
School of Computing
Clemson University

Clemson, South Carolina 29634-0974 USA
{mamurph, mfenn, sebgoa}@cs.clemson.edu

Abstract

Sharing traditional clusters based on multiprogramming
systems among different Virtual Organizations (VOs) can
lead to complex situations resulting from the differing soft-
ware requirements of each VO. This complexity could be
eliminated if each cluster computing system supported only
a single VO, thereby permitting the VO to customize the
operating system and software selection available on its
private cluster. While dedicating entire physical clusters on
the Grid to single VOs is not practical in terms of cost and
scale, an equivalent separation of VOs may be accomplished
by deploying clusters of Virtual Machines (VMs) in a manner
that gives each VO its own virtual cluster. Such Virtual
Organization Clusters (VOCs) can have numerous benefits,
including isolation of VOs from one another, independence
of each VOC from the underlying hardware, allocation of
physical resources on a per-VO basis, and clear separation
of administrative responsibilities between the physical fabric
provider and the VO itself.

Initial results of implementing a complete system utilizing
the proposed Virtual Organization Cluster Model confirm
the administrative simplicity of isolating VO software from
the physical system. End-user computational jobs submitted
through the Grid are executed only on the virtual cluster
supporting the respective VO, and each VO has substantial
administrative flexibility in terms of software choice and sys-
tem configuration. Performance tests using the Kernel-based
Virtual Machine (KVM) hypervisor indicated a virtualiza-
tion overhead of under 10% for latency-tolerant scientific
applications, such as those that would be submitted to a
standard or vanilla Condor universe. Latency-sensitive ap-
plications, such as MPI, experience substantial performance
degradation with virtualization overheads on the order of
60%. These results suggest that VOCs are suitable for High-
Throughput Computing (HTC) applications, where real-time
network performance is not critical. VOCs might also be
useful for High-Performance Computing (HPC) applications
if virtual network performance can be sufficiently improved.

Figure 1. Grid-Based Use Case for a VOC

1. Introduction

Virtual Organizations (VOs) enable scientists to collab-
orate using diverse, geographically distributed computing
resources. Requirements and membership of these VOs often
change dynamically, with objectives and computing resource
needs changing over time [1]. Given the diverse nature of
VOs, as well as the challenges involved in providing suitable
computing environments to each VO, Virtual Machines
(VMs) are a promising abstraction mechanism for providing
grid computing services [2]. Such VMs may be migrated
from system to system to effect load balancing and system
maintenance tasks [3]. Cluster computing systems, including
services and middleware that can take advantage of several
available hypervisors [4], have already been constructed
inside VMs [5]–[7]. However, a cohesive view of virtual
clusters for grid-based VOs has not been presented to date.
The purpose of this paper is to bridge this gap by presenting
a Virtual Organization Cluster Model.

Implementing computational clusters with traditional mul-
tiprogramming systems may result in complex systems that



require different software sets for different users. Each
user is also limited to the software selection chosen by a
single system administrative entity, which may be different
from the organization sponsoring the user. Virtualization
provides a mechanism by which each user entity might be
given its own computational environment. Such virtualized
environments would permit greater end-user customization
at the expense of some computational overhead. [2]

The primary motivation for the work described here is to
enable a scalable, easy-to-maintain system on which each
Virtual Organization can deploy its own customized envi-
ronment. Such environments will be scheduled to execute on
the physical fabric, thereby permitting each VO to schedule
jobs on its own private cluster.

Figure 1 presents a use case of using Virtual Or-
ganization Clusters (VOCs) in a manner based on
the operating principles of the Open Science Grid
(http://www.opensciencegrid.org) – a grid infrastructure
known to support VOs instead of individual users. In the
figure, “VO Central” is a database run by the VO manager.
It contains a list of members and their associated privileges
stored in the Virtual Organization Manager Service (VOMS),
and a set of computing environments (in the form of virtual
machine images) stored in the “Virtual Organization Virtual
Machine (VOVM).” When a VO member wants to send work
to the grid, a security proxy is obtained from her VOMS
server, and the work is submitted to a VO meta-scheduler
(casually depicted as a cloud in this figure). Once work is
assigned to a site, this site downloads the proper VM either
from the VOVM or from its own VM cache. These data
transfers can be done through the OSG data-transfer mech-
anisms (i.e. Phedex and dCache) and can use the GridFTP
protocol. If a site becomes full, work can be migrated to
another site using VM migration mechanisms. This use case
represents an ideal form of grid operation, which would
provide a homogeneous computing environment to the users.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work and describes how the VOCM
fits into the larger research picture. Section 3 describes the
model in detail, providing high-level descriptions of both
the VOC and the supporting physical fabric. A test imple-
mentation of a system designed according to the model is
presented in Section 4, followed by performance validation
results in Section 5. Finally, conclusions and future work are
presented in Section 6.

2. Related Work

Constructing virtual clusters for use in virtual grid com-
puting has required addressing the issues of installing and
provisioning virtual machines. Middleware has been devel-
oped to facilitate construction of virtual machine clusters.
Several middleware-oriented projects have been undertaken,
including In-VIGO [5], [7], [8], VMPlants [6], DVC [9],

virtual disk caching [10], and the Globus Virtual Workspace
[11], [12].

Each virtual cluster, no matter how constructed or real-
ized, needs a physical cluster upon which to run. Several
mechanisms have been developed for the rapid construction
of physical computation clusters, including Rocks [13]–[15],
OSCAR [16], and the Cluster-On-Demand (COD) system
[17]. These systems facilitate the rapid installation and con-
figuration of physical-level clusters that share resources via
traditional multiprogramming. In particular, Rocks provides
a mechanism for easy additions of software application
groups via “rolls,” or meta-packages of related programs
and libraries [18]. The OSCAR meta-package system also
permits related groups of packages to be installed onto a
physical cluster system [16].

Several networking libraries have been developed for vir-
tual machines, which permit virtual clusters to use networks
logically isolated from the underlying physical hardware.
Both Virtual Distributed Ethernet (VDE) [19] and Virtuoso
[20] provide low-level virtualized networks that can be
utilized for interconnecting VMs. Furthermore, wide-area
connectivity of VMs can be achieved through the use of tools
such as Wide-area Overlays of virtual Workstations (WOW)
[21] and Violin [22]. Live migration of VMs between
physical nodes [3] recently has been shown to be possible
over wide-area networks such as the Internet [23].

Unlike prior cluster computing and virtualization research,
the cluster virtualization model described in this paper
focuses on customizing environments for individual VOs
instead of individual physical sites. Since a priori knowledge
of a particular VO’s scientific computing requirements is not
always available, this model makes few assumptions about
the operating environment desired by each individual VO.
As a result, the focus of the physical system configuration
is to support VMs with minimal overhead and maximal ease
of administration. Moreover, the system should be capable
of supporting both high-throughput and high-performance
distributed computing needs on a per-VO basis, imposing
network performance requirements to support MPI and
similar packages.

3. Cluster Virtualization Model

The Virtual Organization Cluster Model specifies the
high-level properties of systems that support the assign-
ment of computational jobs to virtual clusters owned by
single VOs. Central to this model is a fundamental di-
vision of responsibility between the administration of the
physical computing resources and the virtual machine(s)
implementing each VOC. For clarity, the responsibilities of
the hardware owners are said to belong to the Physical
Administrative Domain (PAD). Responsibilities delegated
to the VOC owners are part of the Virtual Administrative



Figure 2. PAD and VAD

Domain (VAD) of the associated VOC. Each physical cluster
has exactly one PAD and zero or more associated VADs.

Figure 2 illustrates an example system designed using
the VOC model. In this example, the PAD contains all the
physical fabric needed to host VOCs and connect them to the
Grid. Each physical compute host in the PAD is equipped
with a hypervisor for running VOC nodes. Shared services,
including storage space, a Grid gatekeeper, and networking
services are also provided in the PAD. Two VOCs are
illustrated in figure 2, each having its own, independent
VAD. Each VOC optionally could include a virtual head
node, which would receive incoming Grid computational
jobs from the shared gatekeeper in the PAD. Alternatively,
each VOC node could receive jobs directly from the shared
gatekeeper, by means of a compatible scheduler interface.

In practice, Virtual Organization Clusters can be supplied
by the same entity that owns the physical computational
resource, by the Virtual Organizations (VOs) themselves,
or by a contracted third party. Similarly, physical fabric on
which to run the VOCs could be provided either by the VO
or by a third party.

3.1. Physical Administrative Domain

The Physical Administrative Domain (PAD) contains the
physical computer hardware (see figure 2), which com-
prises the host computers themselves, the physical network
interconnecting those hosts, local and distributed storage
for virtual machine images, power distribution systems,
cooling, and all other infrastructure required to construct a
cluster from hardware. Also within this domain are the host
operating systems, virtual machine hypervisors, and central
physical-level management systems and servers. Fundamen-
tally, the hardware cluster provides the hypervisors needed
to host the VOC system images as guests.

An efficient physical cluster implementation requires
some mechanism for creating multiple compute nodes from
a single VO-submitted image file. One solution is to employ
a hypervisor with the ability to spawn multiple virtual
machine instances from a single image file in a read-only

mode that does not persist VM run-time changes to the
image file. Another solution would be to use a distributed file
copy mechanism to replicate local copies of each VM image
to each execution host. Without this type of mechanism, the
VO would be required to submit one VM image for each
compute node, which would result in both higher levels
of Wide Area Network traffic and greater administration
difficulty.

3.2. Virtual Administrative Domain

Each Virtual Administrative Domain (VAD) consists of
a set of virtual machine images for a single Virtual Or-
ganization (VO). A VM image set contains one or more
virtual machine images, depending upon the target physical
system(s) on which the VOC system will execute. In the
general case, two virtual machine images are required: one
for the head node of the VOC, and one that will be used to
spawn all the compute nodes of the VOC. When physical
resources provide a shared head node, only a compute node
image with a compatible job scheduler interface is required.

VMs configured for use in VOCs may be accessed by the
broader Grid in one of two ways. If the physical fabric at
a site is configured to support both virtual head nodes and
virtual compute nodes, then the virtual head node for the
VOC may function as a gatekeeper between the VOC and
the Grid, using a shared physical Grid gatekeeper interface
as a proxy. In the simpler case, the single VM image used to
construct the VOC needs to be configured with a scheduler
interface compatible with the physical site. The physical
fabric will provide the gatekeeper between the Grid and the
VOC (figure 2), and jobs will be matched to the individual
VOC.

3.3. Provisioning and Execution of Virtual Ma-
chines

Virtual Organization Clusters are configured and started
on the physical compute fabric by middleware installed in
the Physical Administrative Domain. Such middleware can
either receive a pre-configured virtual machine image (or
pair of images) or provision a Virtual Organization Cluster
on the fly using an approach such as In-VIGO [5], VMPlants
[6], or installation of nodes via virtual disk caches [10].
Middleware for creating VOCs can exist directly on the
physical system, or it can be provided by another (perhaps
third-party) system. To satisfy VAD administrators who
desire complete control over their systems, VM images can
also be created manually and uploaded to the physical fabric
with a grid data transfer mechanism such as the one depicted
in the use case presented in figure 1.

Once the VM image is provided by the VO to the physical
fabric provider, instances of the image can be started to
form virtual compute nodes in the VOC. Since only one



VM image is used to spawn many virtual compute nodes,
the image must be read-only. Run-time changes made to
the image are stored in RAM or in temporary files on
each physical compute node and are thus lost whenever the
virtual compute node is stopped. Since changes to the image
are non-persistent, VM instances started in this way can
be safely terminated without regard to the machine state,
since data corruption is not an issue. As an example, VM
instances started with the KVM hypervisor are abstracted
on the host system as standard Linux processes. These
processes can be safely stopped (e.g. using the SIGKILL
signal) instantly, eliminating the time required for proper
operating system shutdown in the guest. Since there is no
requirement to perform an orderly shutdown, no special
termination procedure needs to be added to a cluster process
scheduler to remove a VM from execution on a physical
processor.

Once mechanisms are in place to lease physical resources
and start VMs, entire virtual clusters can be started and
stopped by the physical system. VOCs can thus be scheduled
on the hardware following a cluster model: each VOC would
simply be a job to be executed by the physical cluster
system. Once a VOC is running, jobs arriving for that VOC
can be dispatched to the VOC. The size of each VOC
could be dynamically expanded or reduced according to job
requirements and physical scheduling policy. Multiple VOCs
could share the same hardware using mechanisms similar to
sharing hardware among different jobs on a regular physical-
level cluster.

4. Initial Test Implementation

An initial cluster implementation was performed to
test the Virtual Organization Cluster Model. This section
presents in detail the procedure that was followed to set
up the physical cluster, configure the physical fabric to
support virtualization, and to construct the VOC itself. The
physical test cluster was based upon the Kernel-based Virtual
Machine (KVM) hypervisor, which was installed on physical
hosts running Slackware Linux 12. A Virtual Organization
Cluster was constructed around a single virtual machine
image into which CentOS 5.1 had been installed. In this
particular implementation, the head node for the VOC was
provided as part of the physical fabric, even though it was
actually implemented inside a virtual machine. This head
node was connected to the Open Science Grid Integration
Testbed.

4.1. Physical Cluster Construction

The hardware cluster for the test installation consisted of
sixteen nodes: fifteen Dell PowerEdge 860 1U rackmount
systems, and one Dell PowerEdge 2970 2U rackmount
server. One PowerEdge 860 system was employed to host the

VOC head node, while the other fourteen were each prepared
to host two VOC virtual compute nodes. Each PowerEdge
860 machine used in this test was configured with a 2.66
GHz dual-core Intel Xeon CPU, 4 GiB of RAM, and an 80
GB hard disk drive. The 2U PowerEdge 2970 server was
employed to host installation images, user home directories,
network services, and a shared VM image store exported
via a Network File System server. Prior benchmarks and
considerable network test results [24] were obtained during
a prior CentOS implementation using the same hardware.

To provide hypervisor services, the Kernel-based Virtual
Machine (KVM) was installed on each compute node and on
the physical head node. KVM was chosen primarily due to
its compatibility with the most recent kernel release at cluster
construction time, as the most recent drivers were needed for
optimal performance of certain hardware components.

Network access was provided to each virtual machine
by means of bridging the physical Ethernet card in each
physical compute node to both the physical node itself
and each guest machine (two guests per host). Thus, three
logical devices shared each physical device. MAC addresses
were assigned to each VM instance by KVM, using a cus-
tom script to generate the MAC addresses deterministically
based on the host machine. On the physical head node,
two separate bridges were employed: one to the cluster’s
private LAN, the other to the University network and public
Internet. Network Address Translation and iptables firewalls
were implemented on both the physical head node and utility
system, allowing them to serve as edge routers for the entire
private LAN. Since each VM obtained an IP address from
the DHCP server, and each IP address was part of the
same subnetwork without regard to physical or virtual host
status, each VM instance had both Internet access and local
connectivity to other VMs in VOC.

In the test cluster, a common VOC head node was pro-
vided as part of the PAD. For administrative simplicity, this
CentOS 5.1 node was implemented as a virtual machine that
was bridged to the public Internet. To supply job scheduling,
Condor 7.0.0 was installed on the shared VOC head node as
well as on all compute nodes. Open Science Grid Integration
Testbed membership was achieved by installing the OSG
Virtual Data Toolkit (VDT) and connecting to OSG by
configuring an OSG compute element. The compute element
that ran Globus GRAM was set up as a shared head node for
both the physical and virtual compute nodes. Differentiation
between the PAD and VAD was done through the attributes
advertised by each compute node’s Condor startd. This
setup, shown in figure 3, used the VOCM variant in which
each VO shared the same head node.

4.2. Virtual Cluster Construction

Constructing the Virtual Organization Cluster for the test
system was a straightforward task, since only 1 Virtual



Figure 3. Initial Test Cluster Setup

Machine image was required to implement the whole VOC.
CentOS 5.1 was installed into a VM image, then Condor was
installed and configured to run a startd process to enable jobs
to be scheduled. The VM image was configured for DHCP
networking, and the primary assumptions made about the
underlying Physical Administrative Domain were that jobs
would arrive via the Condor scheduler and that the KVM
hypervisor would be used to execute the VMs.

As a result of the hardware emulated by KVM, implicit
low-level requirements were imposed upon the VOC system.
In practice, these requirements were not substantial, since
the Linux system used in the VOC was generic enough to
support the emulated hardware. However, a different choice
of guest operating system might have required additional
configuration steps for the VO administrator. In particular,
KVM could execute only 32-bit, x86-compatible operating
systems.

5. System Performance Validation

Several performance tests were conducted to ensure that
the Virtual Organization Cluster Model was viable. Viability
of a VOC was defined as the ability both to start a VOC in
a reasonable amount of time and to execute scientific ap-
plications with reasonable performance. In order to evaluate
the viability of the test VOC, two major installations were
performed: a Slackware Linux 12 installation directly on
the physical hardware and a CentOS 5.1 installation into
an operational Virtual Organization Cluster. Following the
installations, boot times were measured for both the physical
and virtual systems. A High Performance Linpack (HPL)

benchmark was performed on the physical compute nodes,
followed by a second HPL benchmark on the VOC. Several
different process grid sizes were used in the benchmark tests.
To determine the cause of observed poor performance with
HPL on the operational VOC, a set of network tests was
conducted. These tests included bandwidth measurement
and ping Round-Trip Time (RTT) measurements to assess
network latency.

To effect the performance tests, the High Performance
Computing Challenge (HPCC) benchmark suite was used,
which included HPL. Boot times were measured manually
for the physical boot procedure, while a simple boot tim-
ing server was constructed to measure VM booting time.
Network bandwidth was measured using both the Iperf
bandwidth measurement tool and the RandomRing band-
width assessment in the HPCC suite. Latency in network
communications under load also was assessed using the
RandomRing benchmark. Measurement of Round-Trip Time
(RTT) of ICMP Echo packets generated by the UNIX ping
tool was used as an additional measure of network latency
both under load (with the HPCC suite running) and without
computational load on the VOC.

5.1. System Performance

Following system installation, boot times were recorded
for both the physical and virtual systems. Since VM startup
was scripted, automated means were devised to measure the
VM boot times. A simple server was deployed on the phys-
ical utility node, which received boot starting notifications
from the physical nodes and boot complete notifications
from the associated virtual nodes. Timing of the boot process
was performed at the server side, avoiding any clock skew
potentially present between physical and virtual nodes, but
possibly adding variable network latency. Boot times for the
physical nodes were subject to even greater variation, as
these were measured manually.

Results of the boot time tests are summarized in table
1. For the physical system, the boot process was divided
into three phases: a PXE timeout, a GRUB timeout, and the
actual kernel boot procedure. While total boot times ranged
from 160 to 163 seconds, 105 to 107 seconds of that time
were utilized by the PXE timeout, and 10 seconds were
attributed to the GRUB timeout. Thus, the actual kernel boot
time ranged from 43 to 46 seconds. In contrast, the virtual
compute nodes required 61.2 to 70.2 seconds to boot. These
virtual machines were configured with a different operating
system (CentOS 5.1) and started approximately 10 additional
processes at boot time, compared to the physical systems. As
a result, not all the boot time discrepancy could be attributed
to virtualization overhead. Nonetheless, the overhead was
small enough that booting the VOC did not require an
inordinate amount of time. Thus, by the requirement that
VOCs boot quickly, the test VOC was viable.



Table 1. Boot Times (seconds)

Physical Node VM
Statistic PXE Timeout Total Boot Actual Boot VM Boot
Minimum 105 160 43 61.2
Median 106 160.5 44 65.4
Maximum 107 163 46 70.2
Average 106.4 160.9 44.5 65.5
Std Deviation 0.63 1.03 1.09 2.54

Table 2. Slackware 12 vs. CentOS 5.1

Process Grid (PxQ) 14x2
Problem Size 77,000
CentOS GFLOPS 115.6
Slackware GFLOPS 129.6
Performance Increase 12.11%

Table 3. Physical Cluster vs. VOC

Process Grid (PxQ) 1x1 7x2 7x4
Problem Size 10,300 38,700 54,800
Physical GFLOPS 7.29 74.39 143.45
VOC GFLOPS 6.57 29.74 63.09
Virtualization Overhead 9.86% 60.02% 56.02%

Following the boot procedures, HPL benchmark data
were obtained for both the physical and operational VOC
nodes (tables 2 and 3). First, an HPL benchmark previously
conducted on the prior CentOS physical installation was
performed on the Slackware hosts. A 12% performance
increase was noted as a result of the Slackware installation.
Although the cause of this increase could not be conclusively
determined, it was believed that the customization of the
installation – including Linux kernel optimization – and
minimization of unnecessary services contributed to the
additional performance. This result showed that keeping the
metal configuration as lightweight and simple as possible
not only made it easier for the cluster administrator to
maintain but also increased the overall performance, thereby
benefiting all VOs using the cluster.

HPL and HPCC tests were performed on both the phys-
ical machines and the VOC, using the same process grid
layouts and problem sizes across administrative domains.
As shown in table 3, the virtualization overhead in terms of
HPL observed throughput was only 9.86% when no inter-
node communication occurred. This type of HPL test on a
single compute node simulated High-Throughput Computing
(HTC) jobs, such as those that would be run in a “vanilla”
Condor universe. MPI jobs that utilized inter-node commu-
nications incurred substantial performance overheads on the
order of 56% to 60%. Network latency was suspected for
this observed overhead, as latency has been implicated as
a cause of performance reduction in prior studies involving
MPI [25], [26]. With MPI applications comprising a signif-
icant fraction of all scientific computing endeavors, it was

desirable to be able to deploy a VOC that had good MPI
performance. The single node HPL performance showed that
running single-processor Condor-based jobs was entirely
viable and will only suffer a performance penalty on the
order of 10%. In contrast, the test VOC was not viable
for High-Performance Computing (HPC) applications using
MPI. Additional network investigations were undertaken to
evaluate the cause of this problem.

5.2. Network Performance

Several networking issues were suspected in the initial
setup. Two VMs shared a single Linux TUN/TAP bridge to a
single physical Gigabit Ethernet port, which was also shared
by the host for host-level network connectivity. Each KVM
instance also emulated an Intel 82540EM Gigabit Ethernet
Network Interface Card (NIC), which was presented to the
guest OS and utilized as if the card were an actual physical
device. The physical NIC on the host was configured in
promiscuous mode, bypassing the internal NIC packet fil-
tering code and offloading the low-level network processing
onto the host CPU. Furthermore, the bridge component
of the kernel and NIC emulation components of KVM
also relied upon the host CPU to effect communications.
As a result, the host CPU was taxed not only with the
computationally-intensive HPL routines, but also with low-
level networking operations typically carried out in the NIC
hardware.

Table 4 summarizes the results of cluster network testing
using Iperf, ping, and the Random-Ring bandwidth and
latency benchmarks in HPCC. Iperf showed 941 Mb · s−1

of available bandwidth when the cluster was not under
load, decreasing to 882 Mb · s−1 when HPL benchmarks
were running on the hosted VOC. This decrease could be
attributed to inter-node MPI communications, which would
have consumed a portion of the network resources. The
decrease in measured bandwidth between VMs was more
significant, dropping from 708 Mb · s−1 to 636 Mb · s−1 for
communications between VMs hosted by different physical
nodes. Communications between two VMs sharing the same
bridge were found to have substantially lower available
bandwidth, with only 499 Mb·s−1 (roughly half the nominal
bandwidth of Gigabit Ethernet) available when not under
load. During the HPL tests, this intra-bridge bandwidth
fell to an available level of 206 Mb · s−1. Bandwidth as



Table 4. Bandwidth and Ping Latency

Condition No-Load Under Load
Parameter P SB BTB P SB BTB
Iperf (Mb · s−1) 941 499 708 882 206 636
RRB (Mb · s−1) N/A 544 24 32
Ping RTT (µs) 106 215 312 191 360 484
RRL (µs) N/A 54 379 233

Key: P – Physical, SB – Virtual links across the Same Bridge, BTB – Virtual
links from one bridge (physical host) to another, RRB – RandomRing
Bandwidth, RRL – RandomRing Latency

measured under load by the Random-Ring benchmarking
was substantially lower in all cases: 544 Mb · s−1 for the
physical hosts, and 24 Mb · s−1 to 32 Mb · s−1 for the
VMs. Lower bandwidth was observed when the MPI rings
included intra-bridge links (SB column of the table) than
when only inter-bridge links (links between VMs hosted
by different physical systems) were included in the MPI
rings. Unlike the Iperf tests, the Random-Ring test data for
bandwidth across intra-bridge links is also averaged with the
available bandwidth between bridges; without this averaging,
it is likely that the intra-bridge links would have shown lower
available bandwidth, based upon the Iperf tests.

Latency between nodes was found to be higher between
virtual hosts than between the underlying physical hosts.
Measuring the Round-Trip Time (RTT) of the ping (ICMP
echo) operation yielded an average of 106 µs without load,
increasing to 191 µs under load. Ping operations across a
single bridge (intra-bridge) required longer times to execute:
215 µs in the absence of load, increasing to 360 µs under
load. RTTs for ping operations between VMs on different
hosts were the longest, beginning at 312 µs and increasing
to 484 µs under load, suggesting that inter-bridge communi-
cations incurred the greatest latency. However, the Random-
Ring benchmarks indicated greater latency between VMs
sharing a single bridge, with bridge-to-bridge latencies 146
µs lower at 233 µs. Both VM latency figures were an order
of magnitude higher than the measured 54 µs latency on the
physical network.

One significant limitation of the network architecture
used for the first implementation was identified as a result
of the test procedures. Two VMs and one physical host
were configured to share one physical Ethernet NIC on
each physical node. Thus, parallel communication between
two pairs of VMs on two separate physical hosts would
have been converted to sequential networking operations,
with packet queuing needed either at the bridges or at the
physical switch. Queuing, in turn, could have introduced
added latency into the communications, which may have
reduced MPI performance. Moreover, an increase in queuing
could have increased packet transmission time, thus causing
the TCP protocol used by MPI to place more packets in
flight to fill the sliding sender window. Such an increase in

packet saturation on the network used in the test cluster has
been shown to increase queuing delays, thereby increasing
latency and further aggravating communications difficulties
[24].

The combination of virtual machine overhead, latency
introduced by the bridged networking, and delay properties
of the underlying physical network resulted in a network
environment that could not support MPI or other latency-
sensitive applications inside VOCs. Latency in the under-
lying physical network was already on the order of 50 µs
for one-way unicast traffic. VOC traffic latency was greatly
increased as a result of the addition of the emulated NIC,
the use of the Linux bridge facility, and the reassignment of
low-level network processing from the physical NIC to the
host CPU. The unsatisfactory performance results obtained
from this experiment indicated that an alternative mechanism
for providing network connectivity to VMs would be needed
if VOCs were to support HPC jobs.

6. Conclusions

The Virtual Organization Cluster Model suggests a system
architecture in which each Virtual Organization (VO) is
given a dedicated computational cluster for which it has
complete administrative access and isolation from other
VOs. As demonstrated by the constructed physical clus-
ter and Virtual Organization Cluster (VOC), virtualization
provides a practical mechanism by which Grid-connected
systems can be designed according to the model. As demon-
strated by the system performance tests, VOCs can ex-
perience a performance loss of under ten percent when
the underlying physical services are minimized. However,
performance losses are unacceptably high when latency-
sensitive applications such as MPI are executed, owing to
limitations observed in the networking layer. Additional
research is needed to determine if the latency observed
with the current implementation can be reduced to a level
sufficient for the execution of MPI jobs.

As demonstrated by the test implementation, the Virtual
Organization Cluster Model provides a methodology by
which Virtual Organizations may have customized cluster
computing environments. Such environment customization
will enable 21st-century scientists to have complete dis-
cretion over the scientific software packages used in their
research endeavors.

Acknowledgment

This material is based upon work supported under a
National Science Foundation Graduate Research Fellowship.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the
Grid: Enabling scalable virtual organizations,” International



Journal of Supercomputing Applications, vol. 15, no. 3, pp.
200–222, 2001.

[2] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A case
for grid computing on virtual machines,” in Proceedings of
the 23rd International Conference on Distributed Computing
Systems, 2003.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implementa-
tion, Boston, MA, May 2005, pp. 273–286.

[4] B. Quetier, V. Neri, and F. Cappello, “Selecting a virtu-
alization system for Grid/P2P large scale emulation,” in
Proceedings of the Workshop on Experimental Grid Testbeds
for the Assessment of Large-scale Distributed Applications
and Tools (EXPGRID’06), Paris, France, June 2006.

[5] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,
I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao,
L. Zhu, and X. Zhu, “From virtualized resources to virtual
computing grids: the In-VIGO system,” Future Generation
Computer Systems, vol. 21, no. 6, pp. 896–909, June 2005.

[6] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo, “VMPlants: Providing and managing virtual ma-
chine execution environments for grid computing,” in Pro-
ceedings of the 2004 ACM/IEEE Conference on Supercom-
puting, 2004.

[7] A. Matsunaga, M. Tsugawa, M. Zhao, L. Zhu, V. Sanjeepan,
S. Adabala, R. Figueiredo, H. Lam, and J. A. Fortes, “On
the use of virtualization and service technologies to enable
grid-computing,” in 11th International Euro-Par Conference,
August 2005.

[8] J. A. B. Fortes, R. J. Figueiredo, and M. S. Lundstrom,
“Virtual computing infrastructures for nanoelectronics sim-
ulation,” Proceedings of the IEEE, vol. 93, no. 10, pp. 1839–
1847, October 2005.

[9] W. Emeneker and D. Stanzione, “Dynamic virtual clustering,”
in IEEE Cluster 2007, Austin, TX, September 2007.

[10] H. Nishimura, N. Maruyama, and S. Matsuoka, “Virtual
clusters on the fly - fast, scalable, and flexible installation,”
in CCGRID 2007: Seventh IEEE International Symposium on
Cluster Computing and the Grid, May 2007.

[11] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor,
and X. Zhang, “Virtual clusters for grid communities,” in
CCGrid 2006, Singapore, May 2006.

[12] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron,
“Virtual workspaces in the Grid,” in 11th International Euro-
Par Conference, Lisbon, Portugal, September 2005.

[13] M. J. Katz, P. M. Papadopoulos, and G. Bruno, “Leveraging
standard core technologies to programmatically build Linux
cluster appliances,” in Cluster 2002: IEEE International Con-
ference on Cluster Computing, April 2002.

[14] P. M. Papadopoulos, M. J. Katz, and G. Bruno, “NPACI
Rocks: Tools and techniques for easily deploying manageable
Linux clusters,” in Cluster 2001: IEEE International Confer-
ence on Cluster Computing, October 2001.

[15] P. M. Papadopoulos, C. A. Papadopoulos, M. J. Katz, W. J.
Link, and G. Bruno, “Configuring large high-performance
clusters at lightspeed: A case study,” in Clusters and Com-
putational Grids for Scientific Computing 2002, December
2002.

[16] J. Mugler, T. Naughton, and S. L. Scott, “OSCAR meta-
package system,” in 19th International Symposium on High
Performance Computing Systems and Applications, May
2005.

[17] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E.
Sprenkle, “Dynamic virtual clusters in a grid site manager,”
in HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing,
June 2003.

[18] G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M. Papadopou-
los, “Rolls: Modifying a standard system installer to support
user-customizable cluster frontend appliances,” in IEEE Inter-
national Conference on Cluster Computing, September 2004.

[19] R. Davoli, “VDE: Virtual Distributed Ethernet,” in First
International Conference on Testbeds and Research Infras-
tructures for the Development of Networks and Communities
(Tridentcom 2005), Trento, Italy, February 2005.

[20] A. I. Sundararaj and P. A. Dinda, “Towards virtual networks
for virtual machine grid computing,” in Proceedings of the
Third Virtual Machine Research and Technology Symposium,
San Jose, CA, May 2004.

[21] D. Wolinsky, A. Agrawal, P. O. Boykin, J. Davis, A. Ganguly,
V. Paramygin, P. Sheng, and R. Figueiredo, “On the design of
virtual machine sandboxes for distributed computing in Wide-
area Overlays of virtual Workstations,” in First International
Workshop on Virtualization Technology in Distributed Com-
puting, 2006.

[22] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, “Virtual dis-
tributed environments in a shared infrastructure,” Computer,
vol. 38, no. 5, pp. 63–69, 2005.

[23] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. West-
all, “The efficacy of live virtual machine migrations over the
Internet,” in Second International Workshop on Virtualization
Technology in Distributed Computing, Reno, NV, November
2007.

[24] M. A. Murphy and H. K. Harton, “Evaluation of local net-
working in a Lustre-enabled virtualization cluster,” Clemson
University, Tech. Rep. CU-CILAB-2007-1, 2007.

[25] M. Matsuda, T. Kudoh, and Y. Ishikawa, “Evaluation of MPI
implementations on grid-connected clusters using an emulated
WAN environment,” in IEEE International Symposium on
Cluster Computing and the Grid (CCGrid03), 2003.

[26] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge
(HPCC) benchmark suite,” in Supercomputing ’06, 2006.


