
Noname manuscript No.
(will be inserted by the editor)

Autonomic Clouds on the Grid

Michael A. Murphy · Linton Abraham ·
Michael Fenn · Sebastien Goasguen

the date of receipt and acceptance should be inserted later

Abstract Computational clouds constructed on top of existing grid infrastructure
have the capability to provide different entities with customized execution environ-
ments and private scheduling overlays. By designing these clouds to be autonomically
self-provisioned and adaptable to changing user demands, user-transparent resource
flexibility can be achieved without substantially affecting average job sojourn time. In
addition, the overlay environment and physical grid sites represent disjoint administra-
tive and policy domains, permitting cloud systems to be deployed non-disruptively on
an existing production grid. Private overlay clouds administered by, and dedicated to
the exclusive use of, individual Virtual Organizations are termed Virtual Organization
Clusters.

A prototype autonomic cloud adaptation mechanism for Virtual Organization Clus-
ters demonstrates the feasibility of overlay scheduling in dynamically changing envi-
ronments. Commodity grid resources are autonomically leased in response to changing
private scheduler loads, resulting in the creation of virtual private compute nodes.
These nodes join a decentralized private overlay network system called IPOP (IP Over
P2P), enabling the scheduling and execution of end user jobs in the private environ-
ment. Negligible overhead results from the addition of the overlay, although the use of
virtualization technologies at the compute nodes adds modest service time overhead
(under 10%) to computationally-bound grid jobs. By leasing additional grid resources,
a substantial decrease (over 90%) in average job queuing time occurs, offsetting the
service time overhead.

1 Introduction

Cloud computing provides a means by which organizations may have dedicated cus-
tomized computational environments without the associated hardware and infrastruc-

M. Murphy, L. Abraham, M. Fenn, S. Goasguen
School of Computing
120 McAdams Hall
Clemson University
Clemson, SC 29634-0974 USA
E-mail: mamurph@cs.clemson.edu



2

ture costs. Virtual Organization Clusters (VOCs), designed around the Virtual Organi-
zation Cluster Model (VOCModel) [1], provide a mechanism for the autonomic creation
of cloud systems for Virtual Organizations [2], utilizing commodity grid computing re-
sources as underlying physical hosts for virtual systems. VOCs provision themselves and
adapt to changing resource demands within the cloud by automatically leasing physi-
cal systems to run VO-customized virtual machines [3]. These dynamic environments
are ideally suited to computationally-bound jobs, such as bag-of-tasks applications [4],
since the communications overheads introduced by current virtualization technologies
can be significant [5,6].

A key benefit of VOCs is their inherent transparency to both end users and non-
participating entities. VOCs are explicitly designed to use existing grid middleware
systems at the user-facing job submission endpoint, thereby eliminating the need for
users to install additional software to utilize the cloud systems. Users simply submit
computational jobs to the cloud systems exactly as they would submit the same jobs
to existing physical sites. Furthermore, VOCs remain completely transparent to grid
entities that choose not to utilize VOC technology, permitting clouds to be deployed in
a manner that is non-disruptive to the existing grid infrastructure. With the addition
of private overlay networking technologies, VOs that choose to participate in VOC
technology may control access to private resources, perform their own scheduling and
resource allocation functions, and prioritize user jobs according to site-independent
policies. As illustrated in figure 1, physical resources are obtained for hosting VOC
nodes by means of pilot jobs, which are autonomically managed by the VOC middle-
ware.

One direct result of leasing physical resources simply as platforms for hosting vir-
tual systems is that the conceptual distinction between different grid sites becomes less
sharp when a grid system is primarily comprised of machines with the same instruc-
tion set architecture. With the addition of an overlay networking system to join widely
distributed virtual machines into a single virtual cluster, the collections of hardware
resources across different grid sites can be conceptually treated as a single resource
collection, similar to a large Condor [7] pool. By leasing these resources autonomically
and instantiating overlay environments, VOCs transparently adapt commodity grid re-
sources to the needs of user communities, instead of forcing users to adapt applications
to the capabilities of available resources. Moreover, since all physical grid resources
effectively become equal under the virtualization assumptions, the need to queue jobs
to wait for compatible execution environments to become available is reduced. Even
with virtualization overheads increasing the service (execution) time of jobs run within
virtual machines, the decrease in waiting time can be significant enough to minimize
impacts to the average job sojourn time (time from submission to completion, or the
sum of the waiting and service times) across the grid. To achieve these results, the auto-
nomic system must adapt simultaneously to changing workloads and changing resource
availability [8] through the use of a “watchdog” daemon, which dynamically adjusts the
size of each VOC by starting and stopping virtual machines.

The purpose of this paper is to extend the existing Virtual Organization Cluster
dynamic provisioning system [3] to enable private overlay scheduling within a virtual
cluster, where the virtual machines comprising the virtual cluster are themselves sched-
uled on leased physical resources. Through the addition of the IPOP overlay network
[9], VOCs can span different administrative domains, allowing physical resources to
be leased from different providers and joined into a single cluster. As demonstrated
through simulation results, grid-wide deployment of VOC technology should not nega-



3

tively affect aggregate performance for computationally-bound grid jobs, even though
the addition of virtualization overhead increases execution time.

The remainder of this paper is organized as follows: related work is discussed in
section 2. Background material is presented in section 3, including a brief description
of the VOC Model in section 3.1, the IPOP overlay network in section 3.2, and policy
options for autonomic adaptation of VOCs in section 3.3. Section 4 describes the results
of a prototype implementation test using a single grid site. For scalability evaluation,
grid-wide simulation results based on actual job traces from the Enabling Grids for
E-sciencE (EGEE) production system are presented in section 5. Finally, conclusions
follow in section 6.

Fig. 1 Virtual Organization Clusters provide a mechanism that enables participating Virtual
Organizations to develop private cloud environments, while simultaneously remaining trans-
parent to end users and non-participating entities.

2 Related Work

Virtualization at the Operating System (OS) level, originally developed for IBM main-
frame systems in the late 1960s, permits an operating system installed directly on
the physical computer, known as the “host” system, to run an additional “guest” op-
erating system or “appliance” inside a virtual container. Virtualization systems allow
architecture-compatible software systems to be decoupled from the underlying physical



4

hardware implementation, thereby allowing computation to be location independent.
[10] Virtualization of grid systems, first proposed in [11], offers substantial benefits
to grid users and system administrators. Users of virtualized systems can be granted
administrative access rights to their virtual machines, thereby allowing end-user cus-
tomization of the software environment to support current and legacy applications.
Since the hardware administrators retain control of the Virtual Machine Monitors
(VMMs) or hypervisors, coarse-grained resource controls can be implemented on a
per-VM basis, allowing hardware resources to be shared among different VMs. [11]
Higher-level system components may also be virtualized; examples include virtual net-
working systems such as ViNe [12], VNET [13], VDE [14], and IPOP[9]. Virtualization
at the application layer has been realized in systems such as In-VIGO [15].

Globus Virtual Workspaces, implemented as part of the Globus Nimbus toolkit, pro-
vide a lease-oriented mechanism for sharing resources on grid systems with fine-grained
control over resource allocation. A Virtual Workspace is allocated from a description
of the hardware and software requirements of an application, allowing the workspace
to be instantiated and deployed on a per-application basis. Following the construction
of the environment, the Workspace must be explicitly deployed on a host site, after
which it can be directly accessed to run computational jobs. [16] By utilizing a leasing
model, Virtual Workspaces can provide high-level, fine-grained resource management
to deliver specific Quality of Service guarantees to different applications using a com-
bination of pre-arranged and best-effort allocations [17]. By leasing multiple resources
simultaneously, Virtual Workspaces may be aggregated into clusters [18].

Another lease-oriented mechanism for grid system virtualization is Shirako [19],
which allows resource providers and consumers to negotiate resource allocations through
automated brokers. Back-end cluster provisioning is provided by Cluster-On-Demand
(COD) [20], an automated system that performs rapid reinstallation of physical ma-
chines or Xen virtual machines [21]. An application of Shirako, called the Grid Resource
Oversight Coordinator (GROC), permits physical resources to be leased by individual
Virtual Organizations for the purpose of deploying completely virtualized grids, which
are accessed by end users through existing Globus middleware. Each physical grid site
hosts a self-contained virtual cluster belonging to the same VO, without spanning of
individual clusters across grid sites. [22]

Autonomic virtualization overlay systems have been devised for the purpose of ex-
tending local clusters to utilize idle resources available on other clusters within the
same local area. VioCluster is based on the concept of dividing each cluster into a
physical and a virtual domain, where the virtual domain may be borrowed and admin-
istered by another group within the same entity. Virtual domains are transparently
and autonomically resized by means of a broker application, which trades machine
allocations between groups by following explicitly configured policies. This brokering
process is transparent to end-users, permitting the virtualized cluster to be used as if
it were a regular physical cluster. [23] By utilizing the Violin overlay network, virtual
domains on several different physical clusters may be combined into a single execution
environment with a private network space [24].

Dynamic Virtual Clustering allows clusters of virtual machines to be instantiated on
a per-job basis for the purpose of providing temporary, uniform execution environments
across clusters co-located on a single research campus. These clusters comprise a Cam-
pus Area Grid (CAG), which is defined as “a group of clusters in a small geographic
area . . . connected by a private, high-speed network” [25]. Latency and bandwidth
properties of the private network are considered to be favorable, thereby allowing a



5

combination of spanned clusters to function as a single high-performance cluster for
job execution. However, the software configurations of the different component clusters
may differ, as the component clusters may belong to different entities with different
management. DVC permits Xen virtual machines with homogeneous software to be
run on federated clusters on the same CAG whenever the target cluster is not in use
by its owner, thereby allowing research groups to increase the sizes of their clusters
temporarily. [25]

Virtual Organization Clusters [1] differ from explicit leasing systems such as Globus
Nimbus and Shirako, in that virtual clusters are leased autonomically through the use
of pilot jobs, which provide for dynamic provisioning in response to increasing work-
loads for the associated VO [3]. VOCs remain transparent to end users and to non-
participating entities, while enabling participating VOs to use overlay networks, such as
IPOP [9], to create virtual environments that span multiple physical domains. Unlike
Campus Area Grids and VioCluster environments, however, these physical domains
are grid sites connected via low-bandwidth, high-latency networks. These unfavorable
connections, coupled with overheads introduced by the addition of virtualization sys-
tems, make VOCs better suited to high-throughput, compute-bound applications than
to high-performance applications with latency-sensitive communications requirements
[6].

3 Background

Extending the prototype implementation of Virtual Organization Clusters to enable
virtual clusters to span multiple physical domains requires the addition of an overlay
network to join virtual compute nodes to a VOC head node, which is intended to be
a persistent system that is publicly addressable. Since VOCs need to scale to a large
number of nodes over a wide area, while simultaneously changing size on a frequent
basis, the IP Over P2P (IPOP) overlay networking system [9] has been chosen for
use in the prototype VOC described in section 4. Autonomic scheduling of the VOC
is performed by a watchdog daemon running on the dedicated VOC head node and
utilizing an algorithm shaped by an autonomic adaptation policy. These components
are detailed in sections 3.1, 3.2, and 3.3.

3.1 Virtual Organization Clusters

Virtual Organization Clusters (VOCs), described more thoroughly in [1], enable the
creation of virtual cluster environments that are compatible across sites, transparent to
end users, implementable in a phased and non-disruptive manner, optionally customiz-
able by Virtual Organizations, and designed according to a specification that permits
formal analysis. Since VOCs are constructed from virtual machines (VMs), and VM
instances can be spawned from a single image, VOC environments are nominally homo-
geneous (and therefore software compatible) across grid sites. If each grid site utilizes
a central distributed filesystem store such as PVFS [26], VOC nodes can be booted
directly from the shared filesystem, without staging the multi-gigabyte image files to
each physical compute node. Once operational, VOCs remain completely transparent
to the end user, since the virtual environments are autonomically managed without
explicit resource reservation requests. VOCs also remain transparent to entities that



6

choose not to deploy them, allowing VOC implementations to be added to existing
production grids without disrupting the operational infrastructure. Different technolo-
gies can be utilized to implement VOCs, since a VOC is simply an implementation of
a system that conforms to the specifications presented in the VOC Model.

A key specification of the VOC Model is the explicit separation of administrative
domains. Each physical site on the grid is a unique Physical Administrative Domain
(PAD), which is managed by local administrators. Components of each PAD include
the physical computing resources, networking interconnections, and all associated in-
frastructure, including power distribution and cooling. Each hosted VOC is a separate
Virtual Administrative Domain (VAD) that is managed by the owning VO or an agent
thereof. This explicit administrative access permits each VAD to have a customized
software environment. Moreover, the separation of administrative domains implies a
separation of policy authority. Local site owners and VOC owners may implement their
own resource allocation, scheduling, and management policies. These policy decisions
are all independent: no coordination is required between the VOC administrators and
the site administrators. VOCs are explicitly a “best-effort” system and will execute on
any physical site willing to provide VM hosting services.

As illustrated in figure 1, jobs are submitted directly to a VOC through a dedicated,
grid-facing head node. This cluster head node contains the necessary grid interconnec-
tion software and appears as a compute element on the grid. As the size of the job
queue on the private head node increases, pilot jobs are submitted to grid sites to
obtain physical resources. In turn, these pilot jobs start virtual machines, which are
dynamically configured, or “contextualized” [27], at boot time to start the overlay net-
work and join the scheduler pool on the private head node. User jobs are then executed
on the virtual cluster as provided by the scheduling policies implemented in the VOC.

3.2 Overlay Networking System

In order to permit Virtual Organization Clusters to span multiple grid sites to utilize
additional resources, it is necessary to provide a mechanism by which VOC nodes on
different physical sites can communicate directly with each other and with the private
head node. Since physical sites may be connected to the Internet via an edge router
with Network Address Translation (NAT) to a local subnetwork containing the com-
pute nodes, an overlay network capable of traversing NAT boundaries is required. One
such overlay system is Internet Protocol Over Peer-to-peer (IPOP). IPOP is built upon
the Brunet Peer-to-Peer (P2P) library, which uses Distributed Hash Tables for struc-
tured P2P routing and scalable object storage [28]. Unlike systems designed around
virtual switches and other virtual network hardware, IPOP utilizes publicly addressable
“bootstrap nodes” that act as Session Traversal Utilities for NAT (STUN) servers and
provide initial routing for new nodes that join the overlay. VOC nodes join the IPOP
pool by connecting to these bootstrap systems, using peer-to-peer technology both for
communications and to distribute system state across the entire network. This system
is scalable to large networks of thousands of nodes distributed across tens or hundreds
of domains, at a cost of reduced network throughput and increased latency. [9] How-
ever, since virtualization overheads constrain VOCs to compute-bound processes with
low sensitivity to network latency and minimal bandwidth requirements [6], network
performance is not a major design concern.



7

Since IPOP provides an isolated private network to the VOC, both job scheduling
and administration tasks can be performed over this network. The Condor scheduler
[7] can be configured to service a pool comprised of IPOP-connected nodes, enabling
private job scheduling within the virtual cluster. In addition, the VOC head node can
send control instructions through the overlay network to the compute nodes, including
instructions to terminate idle compute nodes when the size of the VOC is to be reduced.
Expansion of the VOC is accomplished by submitting pilot jobs to physical grid sites,
which start virtual machines when executed. These virtual machines are configured to
contact the IPOP bootstrap infrastructure upon startup, thereby joining the private
overlay network. Decisions to shrink or expand a VOC can be made within the Virtual
Administrative Domain of the VOC itself, using policies configured by the Virtual
Organization. Unlike prior related work [29], it is not necessary to trust the virtual
systems to terminate themselves correctly, since the physical systems retain the ability
to terminate the pilot jobs used to start the virtual machines. When the pilot jobs are
terminated by the local site, the virtual machine instances are immediately killed.

3.3 Autonomic Adaptation

Virtual Organization Clusters are designed to expand to utilize available grid resources
whenever the number of user jobs in the VOC scheduler queue exceeds the size of
the VOC itself. Conversely, as the virtual cluster becomes under-utilized due to jobs
completing, the virtual machines are terminated so that the computational resources
may be returned to resource pool for others to use. The policy that is used to effect
expansion and shrinkage is ultimately linked to the private scheduling queue and thus
falls within the Virtual Administrative Domain of the VOC. Since the principle of
administrative domain separation results in a complete separation of policy between
the VAD and the underlying Physical Administrative Domains of the host sites, policy
coordination might not exist between the host sites and the VOC. In such a case, the
VOC relies on host site scheduling to obtain resources, and host sites may enforce any
desired policy against the Virtual Organization to limit resource usage or share physical
systems among different VOs. Since VOC nodes are started via regular pilot jobs, the
host systems need only provide a virtualization system and a means for starting and
stopping VMs. Provided the pilot jobs are authorized to run on all grid sites, and
assuming that the grid consists largely of machines with a compatible instruction set
architecture, the disparate resources on different grid sites may be conceptually viewed
as a single pool of collected resources onto which the virtual machines are scheduled.
Once several machines have been started for a single Virtual Organization, the overlay
network binds them into a private Virtual Organization Cluster.

A significant challenge in managing virtual clusters arises from the need to deter-
mine when the cluster size should be changed in response to changing workloads and
changing resource availability [8]. As the total workload in terms of the number of
jobs waiting to utilize a VOC increases, it is generally desirable to increase the size
of the VOC by adding additional virtual machines leased from additional physical re-
sources. However, the VOC must also be careful not to over-subscribe the physical
resources, in order to prevent queuing of the pilot jobs and an attendant decrease in
aggregate performance. The initial “watchdog” daemon implemented to perform this
management [3] utilizes a naive greedy algorithm that responds quickly to workload
changes but assumes that the total workload will not result in over-subscription of the



8

physical resources. Once a grid system approaches capacity, however, it is necessary for
the watchdog to adjust both to workload demands and resource availability, in order to
optimize resource allocation. Performing this optimization in an environment without
policy collaboration between the virtual and physical administrative domains is the
subject of ongoing research. For the purpose of testing of overlay scheduling behavior,
a simplifying assumption is made that there is sufficient excess physical capacity in the
grid to permit scheduling based solely upon workload demands.

4 Prototype Implementation Results

Although the overhead of adding virtualization to grid systems has previously been
evaluated [6], and the overhead of using the IPOP network overlay has been inde-
pendently studied [9], the combination of both overheads in an overlaid scheduling
environment with Virtual Organization Clusters has not been measured. Since the
overhead of virtualization would primarily affect job service time in a grid system
with sufficient physical resources to handle all jobs concurrently, a chief concern was
the amount of latency that might be added by the overlay scheduling system, which
necessitated the use of an overlay network. In order to ensure that this overlay over-
head would not have unexpected detrimental impacts on compute-bound jobs running
within the virtual machines, tests were conducted using an Open Science Grid (OSG)
[30] site configured to support virtualization. The OSG grid site was configured with 16
dual-core compute nodes, each with an Intel Xeon 3070 CPU and 4 binary gigabytes
(GiB) of Random Access Memory (RAM), with the Kernel-based Virtual Machine
(KVM) [31] hypervisor running within a 64-bit installation of CentOS 5.2. Virtual ma-
chine images were configured with 32-bit CentOS 5.2 and located on a shared Parallel
Virtual FileSystem (PVFS) [26] store. Virtual machine instances were booted directly
from the image located on the shared filesystem, without first staging the image to
the local compute nodes, using the “snapshot” mode of KVM. These shared images
were made available in a read-only configuration, with non-persistent writes redirected
to a temporary file on local disk storage at each compute node. Internet connectivity
for the test site was provided by an edge router using Network Address Translation
(NAT), with the physical compute nodes isolated in a private IPv4 subnetwork. OSG
connectivity was provided through the standard OSG software stack including Globus
[32].

A VOC head node was constructed using a virtual machine hosted by an off-
site laboratory workstation. Condor [7] was installed on the head node to serve as a
scheduler, and synthetic workload jobs were submitted directly to the VOC local pool.
A watchdog daemon process, using the naive greedy watchdog algorithm with added
support to maintain a minimum number of running VMs at all times, was run on the
same head node. This watchdog created pilot jobs, which were submitted through a
Globus client to the OSG test site, in response to the arrival of synthetic workload jobs
in the VOC Condor queue. The pilot jobs started virtual compute nodes, which joined
an IPOP network anchored at the workstation by contacting its bootstrap service.
Once connected to the private IPOP network, the virtual compute nodes joined the
Condor pool created by the collector on the VOC head node (the workstation-hosted
virtual machine, also joined via IPOP), and Condor scheduled and executed the actual
test jobs. Whenever the watchdog daemon determined that an excess number of pilot



9

Table 1 Observed makespan lengths and system throughputs for 10 overlay experiment trials

Test Without Overlay With Overlay Change (Absolute) Change (Relative)
Minimum Makespan (s) 2706 2714 8.000 0.2956 %
Median Makespan (s) 2709 2720 11.00 0.4061 %
Maximum Makespan (s) 2710 2737 27.00 0.9963 %
Mean Makespan (s) 2708 2722 13.50 0.4985 %
Makespan Standard Deviation (s) 1.414 7.735 6.321 447.0 %
Minimum Throughput (Jobs · s−1) 1.845× 10−2 1.827× 10−2 −1.820× 10−4 - 0.9865 %
Median Throughput (Jobs · s−1) 1.846× 10−2 1.839× 10−2 −7.467× 10−5 - 0.4045 %
Maximum Throughput (Jobs · s−1) 1.848× 10−2 1.842× 10−2 −5.447× 10−5 - 0.2948 %
Mean Throughput (Jobs · s−1) 1.846× 10−2 1.837× 10−2 9.000× 10−5 - 0.4954 %
Throughput Standard Deviation 9.644× 10−6 5.207× 10−5 4.243× 10−5 439.9 %

jobs were running in comparison to the size of the Condor queue, the pilot jobs were
instructed to terminate, causing the virtual machines to be terminated.

4.1 Overlay Scheduling and Networking

To measure the relative performance difference of using a VOC with overlay scheduling
and IPOP overlay networking, two sets of tests were conducted. A synthetic work-
load consisting of a 10-minute sleep procedure was devised, in order to approximate
compute-bound jobs without incurring potential variations in service times that could
result from running an actual compute-bound job within a virtual machine. In the
control trials, a batch of 50 sleep jobs was submitted directly to the local scheduler
on the physical grid site head node. For the experiment trials, the same batch of 50
jobs was submitted directly to the Condor central manager running within the VOC.
Total makespan times were collected for both sets of trials, and each trial was repeated
10 times to reduce the effects of random variation in observed makespan lengths. De-
scriptive and relative statistics were computed for the makespan times. Throughput
measures in jobs per second were also computed.

Results of the trials, summarized in table 1, indicated a slight increase in average
makespan time (less than one half of one percent) for jobs submitted through the
overlay scheduling system, compared to jobs submitted directly to the physical cluster
scheduler. This increased makespan length corresponded to a similarly small decrease
in job throughput resulting from the addition of the overlay. In the worst case observed
in all trials, the maximum makespan and minimum throughput were affected by less
than one percent. Variations in makespan and throughput observations between trials
was substantially increased by over 400% when the overlay scheduler and network
were added, likely due to the addition of a second layer of interval scheduling with the
additional Condor pool overlaid on top of the physical Condor pool. Plotted traces
of mean observations (figures 2 and 3) further confirmed the minimal overhead of the
VOC overlay system.

4.2 VOC Adjustment Policy

A second experiment was performed to evaluate the behavior of the watchdog daemon
when monitoring the private scheduler queue and adjusting the size of the Virtual



10

Fig. 2 Autonomic VOC size adjustment behavior when executing long jobs without an overlay
network (average of 10 repetitions of the experiment).

Fig. 3 Autonomic VOC size adjustment behavior when executing short jobs privately sched-
uled using the IPOP overlay network (average of 10 repetitions of the experiment).

Organization Cluster. As illustrated in figure 4, the simple greedy watchdog algorithm
proved to be over-responsive when batches of microbenchmark (10-second) jobs were
submitted to the scheduler. The VOC was rapidly expanded to use all 16 available
processor cores at the first watchdog interval. A delay of approximately 60 seconds was
observed while the VOC nodes booted, after which the short user jobs quickly ran to
completion. Even though additional jobs arrived in the queue while the VOC nodes
were booting, all jobs from the first two batches had completed within 140 seconds.
At this time, the size of the VOC was shrunk to zero, causing the virtual machines
to vacate the physical systems completely. When another batch of short jobs arrived



11

Fig. 4 Simple Greedy Algorithm for autonomic VOC size adjustment: VMs are started when-
ever there are excess jobs in the scheduler queue and free physical nodes available. Once the
jobs complete and the queue size decreases, VMs are terminated quickly.

at 180 seconds into the test, all 16 virtual machines had to be restarted, resulting in
another boot delay.

To provide a buffer against excessively short jobs, a Delayed Response adaptation
algorithm was devised. This policy resulted in the immediate creation of a pair of
VOC nodes to remain active at all times for the handling of instantaneously short (by
design or by failure) jobs. In addition, the VOC was expanded by only one node at a
time, and expansion only occurred if the size of the Condor scheduler queue exceeded
the VOC size for at least 10 watchdog intervals. Similarly, the VOC was decreased by
one node at a time, to a minimum size of two nodes, only when the size of the VOC
exceeded the size of the Condor queue for at least 10 watchdog intervals. The results
of submitting two batches of short jobs have been illustrated in figure 5, which shows
a slow increase in the number of VOC nodes in response to the first batch of jobs. A
slow decrease in the number of VOC nodes was observed between batches, followed by
another slow increase as the second batch of jobs arrived. Once all jobs from the second
batch completed, the VOC size slowly declined to the minimum size (two) specified by
the policy.

5 Simulation Results

Although tests on the prototype, as presented in section 4, suggested the addition of
both overlay networking (IPOP) and overlay scheduling (Condor) would have minimal
impact on job execution, the results did not account for either the behavior of such a
system at scale or the additional overhead of operating system virtualization, which
was not tested by the microbenchmark sleep processes. In order to ensure the viability
of VOCs over a real production grid, simulations were required. Therefore, a simu-
lation system was developed, called the Simulator for Virtual Organization Clusters
(SimVOC) [33]. Following the taxonomy provided by Sulistio et al. [34], SimVOC was



12

Fig. 5 Delayed Response Algorithm for autonomic VOC size adjustment: a minimum of 2
VMs are kept in operation at all times, and VMs are started and stopped in response to queue
size trends over a time series of samples.

designed to be a dynamic, trace-driven, discrete-event simulation system with continu-
ous output, hybrid grid model, and a serialized (single-threaded) kernel. As utilized in
the experiments described here, SimVOC was operated via Python driver applications
in a completely deterministic execution mode. For simplicity, the simulation system
did not model cross-site authentication and authorization. Instead, it was assumed
that each physical grid site permitted jobs from users affiliated with any Virtual Orga-
nization observed in the trace inputs. For the purpose of simulating VOCs, a synthetic
VO named “_pilot_” was created, and it was assumed that every grid site would accept
virtualization jobs from the “_pilot_” VO.

As introduced in the previous section, the choice of watchdog algorithm was found
to impact the aggregate behavior of the grid whenever VOCs were in use. An adaptation
to the Delayed Response Algorithm was made for simulation purposes, in which the
minimum level of virtual machines – called the “target level” – was achieved by starting
the target number of VMs whenever the first user job arrived for a particular VOC.
This minor optimization aided in the comparative analysis of results when compared
to the naive greedy algorithm. A second adaption, which permitted the total number
of machines for a single VOC to be limited to a fixed upper bound, was not utilized in
these simulation experiments.

5.1 Trace-Driven Simulations

In order to use a realistic distribution of job metrics, trace inputs to the simulation
system were acquired from the Grid Observatory [35] and converted to a format usable
by the simulator. The traces consisted of a dynamic map of the Enabling Grids for
E-sciencE (EGEE) grid; the set of jobs, including submission times, lengths, and VO
relationships, observed on EGEE by the gLite middleware [36] from 00:00 UTC on
December 8, 2008, to 23:59 UTC on May 10, 2009; and a dynamic list of Virtual



13

Organizations found on the grid over the same time period. An aggregation function of
the simulation system was used to calculate the total number of jobs running on grid
sites and waiting in scheduler queues grid-wide.

Since the available data sets listed the Computing Elements (CEs), or grid sites,
present on EGEE and not the actual cluster systems, it was necessary to adjust the
CPU core count. Multiple grid sites frequently share the same underlying hardware,
resulting in a substantial over-count of actual CPU cores. Since all site names were
given as fully-qualified domain names, a set of heuristics was devised to reduce the
over-count by detecting sites on the same domain with the same CPU count, then
merging the CPUs of all sites on the same domain into a single cluster. The size of
the merged cluster was set to the largest observed CPU count for all CEs on the same
domain. Without these heuristics, the total number of CPU cores on the EGEE grid
at 00:00 UTC on December 8, 2008 was reported to be 314,547, which was determined
to be an unrealistic overestimate. After application of the heuristics, the total number
of CPU cores on EGEE on the same date was reduced to 107,396.

An additional data issue resulted from the relative timing of job arrival and Virtual
Organization registration, relative to the grid map data. Since the job and VO data
were derived from the job traces, while the map data were extracted from a different
data set, some discrepancies were found in the timing. In particular, jobs could not
always be matched to target sites or to affiliated VOs, resulting in jobs receiving a
zero execution length and an error status, since the simulator was unable to find the
resources on which the jobs were supposed to run.

5.2 Traditional Grid Systems

To check the non-scheduler portion of the simulated grid model, a control simulation
was effected, in which the actual job start and finish times from the EGEE job input
trace were used to start and stop jobs on sites. As illustrated in figure 6 and table 2,
most jobs executed on the actual EGEE grid were compelled to wait in the queue for
some period of time, averaging 2,740 s, before starting execution. Combining the wait
time and service time, jobs experienced an average sojourn time (time from submission
to completion) of 11,700 s. However, the median sojourn time was only 402 s. This time
discrepancy, along with the substantially smaller median service time compared to the
mean service time, indicated that the distribution of job lengths was right-tailed, with
an abundance of short jobs. Issues with the trace data also resulted in an absence of
jobs between December 29, 2008 and January 18, 2009, as evidenced between hours
500 and 1000 in figure 6.

Significant differences were observed between the simulator and the EGEE data
once the scheduling portion of the simulated grid model was enabled. Results of this
“standard” simulation, illustrated in figure 7 and summarized in table 2, indicated
greatly increased job queuing behavior, with an order of magnitude increase in observed
job waiting time and an attendant increase in job sojourn time. The greatly reduced
performance of the simulated grid in this case was determined to have been caused by
a naive setting of the scheduling interval (300 s) for those sites using the Condor sched-
uler, resulting in a mean wait time increase of nearly half an hour. Grid sites using
the Condor scheduler were modeled using an interval scheduler optimized for High-
Throughput Computing (HTC) applications, whereas sites specifying other schedulers
were modeled using a zero-interval scheduler optimized for High-Performance Com-



14

Fig. 6 Control Simulation: Jobs were started and stopped in the simulator according to the
timestamps present in the raw input data, without running the simulated schedulers.

puting (HPC). Thus, the median wait time was reduced to zero as a large number of
jobs targeted at sites with non-Condor schedulers started instantly. Nevertheless, the
reduced performance of the simulated Condor scheduler resulted in a larger amount of
aggregate queuing, indicating poorer performance than was actually observed on the
physical EGEE grid.

5.3 Adding Virtual Organization Clusters

Following the standard simulation, Virtual Organization Clusters were added to the
simulated grid. One simulated VOC was constructed for each Virtual Organization
observed in the input job trace, for a total of 50 VOCs. Each VOC utilized the Con-
dor scheduler, again with a naive 300 s interval setting, and was given a unique grid
Compute Element (CE) named with a prefixed version of the VO name. Jobs from the
EGEE input trace were modified so as to be submitted to the unique CE correspond-
ing to the job VO, instead of submission directly to a simulated grid site. Each VO
CE was equipped with a simulated watchdog, and experiment sets were constructed
using both a naive greedy VOC adjustment algorithm and a greedy algorithm with a
minimum target level set to 1024. Although this target level was regarded as high, the
total number of physical CPU cores that would be utilized at the target level for all
50 VOCs running simultaneously would have been 51,200, slightly under 50% of the
cores present in the simulated grid. Each set of VOC experiments was repeated for
both the KVM and Xen hypervisors, using 8.8% and 6.6% overheads (respectively) for
compute-bound jobs as measured in prior work [6].



15

Fig. 7 Standard Simulation: The entire grid system, including the schedulers, was simulated,
using the submission time, job length, and target grid site from the input data set.

As illustrated in figures 8 through 11 and summarized in table 2, the addition of
Virtual Organization Clusters to the simulated EGEE grid model reduces job queuing
substantially. Regardless of the choice of the KVM or Xen hypervisor, the addition
of VOCs with the naive watchdog algorithm reduced mean job waiting times by 83%
compared to the actual EGEE data from the control experiment, and 90% compared
to the standard simulation experiment. When the target level was set to 1024, wait
times were reduced by another 9% compared to the naive algorithm, resulting in a 91%
reduction from the standard test. For both tests, all Condor intervals – both within
the VOCs and on the simulated physical sites – were set at the same naive levels used
for the poorly-performing standard simulation experiment.

The addition of virtualization overhead did increase both the mean and median
job service (execution) times, as expected. However, the increase in service times was
largely offset by the decrease in waiting time, resulting in the same mean job sojourn
time for both the KVM VOC (without target levels) and standard architecture sim-
ulations. A slight decrease in sojourn times was observed when the Xen hypervisor
was simulated. At scale, the addition of target levels demonstrated no improvement
over the naive greedy watchdog algorithm, with an observed increase in mean sojourn
times observed for both KVM and Xen. As noted in table 2, maximum sojourn times
for any job decreased relative to the standard simulation whenever VOCs were in use.
However, one job experienced an exceptionally long queuing delay when the Xen VOC
test was conducted with target levels set.

To lease the simulated physical grid resources, pilot jobs were required. These jobs
had the effect of doubling the utilization of the grid at any time at which user jobs
were running, since there was a 1-to-1 correspondence between user jobs and pilot jobs
when the naive greedy watchdog algorithm was used. Pilot job requirements for either



16

Table 2 Measured statistics for simulation experiments. Values are exact for job counts and
to 3 significant figures for time measurements. All time measurements are in seconds. KVM-0
and Xen-0 refer to simulations without target levels set, while KVM-1024 and Xen-1024 refer
to simulations with target levels set to 1024. Since jobs were recorded whenever jobs finished,
and pilot jobs for target-level VOC simulations were left running when above the target level,
pilot job counts for these simulations were not recorded.

Measure Control Standard KVM-0 KVM-1024 Xen-0 Xen-1024
User Jobs 258,097 258,097 258,097 258,097 258,097 258,097
Pilot Jobs 0 0 149,888 N/M 150,189 N/M
User Jobs Discarded 101,524 101,293 9,151 120 8,939 115
User Jobs Executed 156,573 156,804 248,946 257,977 249,158 257,982
Min Wait Time 0.00 0.00 0.00 0.00 0.00 0.00
Median Wait Time 206 0.00 316 164 316 164
Max Wait Time 823,000 2,380,000 462,000 462,000 462,000 2,090,000
Mean Wait Time 2,740 4,470 457 417 457 418
Stddev Wait Time 15,100 62,800 6,240 6,400 6,240 7,610
Min Service Time 0.00 0.00 0.00 0.00 0.00 0.00
Median Service Time 111 111 885 1,000 878 982
Max Service Time 478,000 478,000 919,000 919,000 901,000 901,000
Mean Service Time 9,000 9,020 13,100 13,300 12,800 13,000
Stddev Service Time 23,200 23,200 31,900 32,300 31,400 31,700
Min Sojourn Time 0.00 0.00 0.00 0.00 0.00 0.00
Median Sojourn Time 402 111 1,190 1,200 1,180 1,170
Max Sojourn Time 1,040,000 2,430,000 920,000 919,000 901,000 2,090,000
Mean Sojourn Time 11,700 13,500 13,500 13,700 13,300 13,400
Stddev Sojourn Time 30,300 68,100 32,600 33,200 32,200 32,900

hypervisor were determined to be nearly identical based on the experiments (table 2),
with approximately 150,000 jobs required in both cases. This number was less than
the total number of user jobs executed in either case due to re-use of existing virtual
machines whenever possible. Since the simulation system recorded job results only upon
completion of the jobs, and the simulations ended without completion of the pilot jobs
in cases where target levels were set, the total number of pilot jobs utilized was not
measured when the target level watchdog algorithm was employed.

Another effect of adding Virtual Organization Clusters to the grid was that 58%
more user jobs were able to run, as recorded in table 2. With VOCs, user jobs were not
submitted to physical grid sites; instead, these jobs were submitted to virtual grid sites
created for each Virtual Organization observed in the trace. As a result, discrepancies
between the grid map data and job trace data did not result in job errors. However,
timing issues between VO registration (which resulted in associated VOC head node
creation) and job arrival did result in a small set of user jobs failing to execute (3.5% in
the worst case, compared to 39% in the standard simulation). Since a greater number
of jobs executed, while total queuing across the grid was substantially decreased, it was
determined that the primary contributor to queuing on the actual grid system was a
result of jobs targeting specific grid sites.

6 Conclusions

The use of pilot jobs and IPOP overlay networking enables the provisioning of Virtual
Organization Clusters with overlay scheduling, permitting each Virtual Organization



17

Fig. 8 KVM simulation without the target level set

to make resource allocation and job priority decisions within its private virtual environ-
ment. VOCs are similar to pilot job frameworks used by High-Energy Physics (HEP)
experiments [37]. As demonstrated through tests using a prototype grid-connected
system, the added overhead of the scheduling and network overlay is negligible for
compute-bound grid jobs. Simulation results using actual trace data from the EGEE
grid indicate that widespread VOC deployment on a grid system would not adversely
affect the aggregate behavior of the grid, even though virtualization systems add exe-
cution overhead. VOCs reduce total aggregate queuing by making all jobs compatible
with all sites composed of machines with the same instruction set architecture. More-
over, the virtual head node for each VOC creates a single submission point for all jobs
affiliated with a particular VO, simplifying job submission for grid users.

Since Virtual Organization Clusters could be deployed system-wide on an existing
production grid without causing performance problems, VOCs are a promising mech-
anism for delivering the benefits of grid virtualization systems, including environment
customization, VO isolation, and legacy application support [11], to existing production
grids without large-scale disruption. Through the use of overlay scheduling, individual
VOs will be able to make resource allocation decisions for their members, allowing site
and VO policies to be independent. Furthermore, the customization capabilities offered
by virtualization will empower VOs to provide the software stacks required by their
users, instead of forcing users to adapt applications to the available software environ-
ments installed by site administrators. As a result, existing computational grids can be
made more useful for domain applications and more accessible to domain experts, with-
out forcing users into system administration roles. VOCs thus provide a mechanism
for leveraging existing infrastructure to provide new computational opportunities.



18

Fig. 9 KVM simulation with the watchdog target level set to 1024

Acknowledgments

The authors would like to thank Prof. Pradip Srimani of the Clemson University
School of Computing for his helpful feedback for improvement of this paper. Simulation
datasets used in this work have been provided by the Grid Observatory (www.grid-
observatory.org). The Grid Observatory is part of the EGEE-III EU project INFSO-RI-
222667. This material is based upon work supported under a National Science Foun-
dation Graduate Research Fellowship. Additional support has been provided by the
National Science Foundation and the United States Department of Energy via the
Open Science Grid.

References

1. Murphy, M.A., Fenn, M., Goasguen, S.: Virtual Organization Clusters. In: 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP
2009), Weimar, Germany (February 2009)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual
organizations. International Journal of Supercomputing Applications 15(3) (2001) 200–
222

3. Murphy, M.A., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of Virtual Or-
ganization Clusters. In: 9th IEEE International Symposium on Cluster Computing and
the Grid (CCGrid ’09), Shanghai, China (May 2009)

4. Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Marchal, L., Robert, Y.: Centralized
versus distributed schedulers for bag-of-tasks applications. IEEE Transactions on Parallel
and Distributed Systems 19(5) (May 2008) 698–709

5. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Nineteenth ACM Symposium on
Operating Systems Principles. (2003)



19

Fig. 10 Xen simulation without the target level set

6. Fenn, M., Murphy, M.A., Goasguen, S.: A study of a KVM-based cluster for grid comput-
ing. In: 47th ACM Southeast Conference (ACMSE ’09), Clemson, SC (March 2009)

7. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – a distributed job scheduler.
In Sterling, T., ed.: Beowulf Cluster Computing with Linux. MIT Press (October 2001)

8. Xu, D., Ruth, P., Rhee, J., Kennell, R., Goasguen, S.: Autonomic adaptation of virtual
distributed environments in a multi-domain infrastructure. In: 15th IEEE International
Symposium on High Performance Distributed Computing (HPDC’06), Paris, France (June
2006)

9. Ganguly, A., Agrawal, A., Boykin, P.O., Figueiredo, R.: IP over P2P: Enabling self-
configuring virtual IP networks for grid computing. In: 20th International Parallel and
Distributed Processing Symposium (IPDPS 2006). (2006)

10. Figueiredo, R., Dinda, P.A., Fortes, J.: Resource virtualization renaissance. Computer
38(5) (May 2005) 28–31

11. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for grid computing on virtual ma-
chines. In: 23rd International Conference on Distributed Computing Systems. (2003)

12. Tsugawa, M., Fortes, J.A.B.: A virtual network (ViNe) architecture for grid computing. In:
20th International Parallel and Distributed Processing Symposium (IPDPS 2006). (2006)

13. Sundararaj, A.I., Dinda, P.A.: Towards virtual networks for virtual machine grid comput-
ing. In: Third Virtual Machine Research and Technology Symposium, San Jose, CA (May
2004)

14. Davoli, R.: VDE: Virtual Distributed Ethernet. In: First International Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(Tridentcom 2005), Trento, Italy (February 2005)

15. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., Krsul, I., Matsunaga, A.,
Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From virtualized resources to virtual
computing grids: the In-VIGO system. Future Generation Computer Systems 21(6) (June
2005) 896–909

16. Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual workspaces in the
Grid. In: 11th International Euro-Par Conference, Lisbon, Portugal (September 2005)

17. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual
machines. In: 17th International Symposium on High Performance Distributed Computing
(HPDC 2008). (2008)



20

Fig. 11 Xen simulation with the watchdog target level set to 1024

18. Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clus-
ters for grid communities. In: 6th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2006), Singapore (May 2006)

19. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.: Sharing network
resources with brokered leases. In: USENIX Technical Conference, Boston, MA (June
2006)

20. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clus-
ters in a grid site manager. In: HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing. (June 2003)

21. Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for networked
clusters: Building the foundations for ‘autonomic’ orchestration. In: First International
Workshop on Virtualization Technology in Distributed Computing (VTDC ’06), Tampa,
FL (November 2006)

22. Ramakrishnan, L., Grit, L., Iamnitchi, A., Irwin, D., Yumerefendi, A., Chase, J.: Toward
a doctrine of containment: Grid hosting with adaptive resource control. In: 19th Annual
Supercomputing Conference (SC ’06), Tampa, FL (November 2006)

23. Ruth, P., McGachey, P., Xu, D.: VioCluster: Virtualization for dynamic computational do-
mains. In: IEEE International Conference on Cluster Computing, Boston, MA (September
2005)

24. Ruth, P., Jiang, X., Xu, D., Goasguen, S.: Virtual distributed environments in a shared
infrastructure. Computer 38(5) (2005) 63–69

25. Emeneker, W., Stanzione, D.: Dynamic virtual clustering. In: 2007 IEEE International
Conference on Cluster Computing. (2007)

26. Carns, P.H., Ligon, W.B., Ross, R.B., Thakur, R.: PVFS: A parallel file system for Linux
clusters. In: ALS’00: Proceedings of the 4th annual Linux Showcase and Conference. (2000)

27. Keahey, K., Freeman, T.: Contextualization: Providing one-click virtual clusters. In: 4th
IEEE International Conference on e-Science, Indianapolis, IN (December 2008)

28. Boykin, P.O., Bridgewater, J.S.A., Kong, J.S., Lozev, K.M., Rezaei, B.A., Roychowdhury,
V.P.: A symphony conducted by Brunet. Online (September 2007)

29. Keahey, K., Doering, K., Foster, I.: From sandbox to playground: Dynamic virtual envi-
ronments in the Grid. In: 5th International Workshop on Grid Computing (Grid 2004),
Pittsburgh, PA (November 2004)



21

30. Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Avery, P., Blackburn,
K., Wenaus, T., Würthwein, F., Foster, I., Gardner, R., Wilde, M., Blatecky, A., McGee, J.,
Quick, R.: The Open Science Grid: Status and architecture. In: International Conference
on Computing in High Energy and Nuclear Physics (CHEP ’07). (2007)

31. Red Hat: Kernel-based Virtual Machine, http://www.linux-kvm.org
32. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. International

Journal of Supercomputing Applications 11(2) (1997) 115–128
33. Clemson Cyberinfrastructure Research Group: SimVOC,

http://cirg.cs.clemson.edu/software/simvoc
34. Sulistio, A., Yeo, C.S., Buyya, R.: A taxonomy of computer-based simulations and its

mapping to parallel and distributed systems simulation tools. International Journal of
Software: Practice and Experience 34(7) (June 2004) 653–673

35. EGEE: Grid observatory, http://www.grid-observatory.org
36. Enabling Grids for E-sciencE: gLite, http://glite.web.cern.ch/glite/
37. Sfiligoi, I., Quinn, G., Green, C., Thain, G.: Pilot job accounting and auditing in Open

Science Grid. In: 9th IEEE/ACM International Conference on Grid Computing (Grid ’08).
(2008)


