
Virtual Organization Clusters: Self-Provisioned Clouds

on the Grid

Michael A. Murphya,1,2,∗∗, Sebastien Goasguena,2,∗

aSchool of Computing, Clemson University, 120 McAdams Hall, Clemson, SC 29634-0974

USA

Abstract

Virtual Organization Clusters (VOCs) are a novel mechanism for overlaying ded-
icated private cluster systems on existing grid infrastructures. VOCs provide
customized, homogeneous execution environments on a per-Virtual Organiza-
tion basis, without the cost of physical cluster construction or the overhead of
per-job containers. Administrative access and overlay network capabilities are
granted to Virtual Organizations (VOs) that choose to implement VOC tech-
nology, while the system remains completely transparent to end users and non-
participating VOs. Unlike existing systems that require explicit leases, VOCs
are autonomically self-provisioned and self-managed according to configurable
usage policies.

The work presented here contains two parts: a technology-agnostic formal
model that describes the properties of VOCs and a prototype implementation of
a physical cluster with hosted VOCs, based on the Kernel-based Virtual Machine
(KVM) hypervisor. Test results demonstrate the feasibility of VOCs for use
with high-throughput grid computing jobs. With the addition of a “watchdog”
daemon for monitoring scheduler queues and adjusting VOC size, the results
also demonstrate that cloud computing environments can be autonomically self-
provisioned in response to changing workload conditions.

Keywords: grid computing, cloud computing, self-provisioning, autonomic
resource management

∗Corresponding author
∗∗Principal corresponding author

Email addresses: mamurph@cs.clemson.edu (Michael A. Murphy), sebgoa@clemson.edu
(Sebastien Goasguen)

1This material is based upon work supported under a National Science Foundation Grad-
uate Research Fellowship.

2The authors would like to thank Linton Abraham, Michael Fenn, and Brandon Kagey for
their assistance in system administration and data collection.

Preprint submitted to Future Generation Computer Systems December 19, 2009



1. Introduction

Grid systems, such as the Open Science Grid (OSG) [33], enable different
entities to share computational resources using a flexible and secure framework.
These resources enable users to run computational jobs that exceed the capabil-
ities of the systems available at any single location. To mitigate compatibility
issues that result from resource heterogeneity, computational grids could be de-
signed as Service Oriented Architectures, in which grid-enabled applications do
not interact with low-level systems and resources directly. Instead, these ap-
plications communicate with abstract service libraries, which are built on top
of standard network communications protocols such as TCP and IP. The ser-
vices layer acts as a high-level operating system for the underlying physical
resources, providing both abstraction and arbitration functionality. Since co-
scheduling physical resources across sites is a complex task, such grid services
are well-adapted for High Throughput Computing (HTC) applications, which
tend to be compute-bound and do not require completion deadlines. [15]

Virtualization of grid systems has been proposed as a mechanism for provid-
ing custom environments to users on grid systems that expose low-level compu-
tational resources as opposed to services [14], thereby enabling private clouds
to be constructed using grid computing resources as a hosting utility [5]. Vir-
tualized grid systems to date have taken the approach that new middleware
should be developed for the leasing of physical resources on which to run vir-
tual containers. The most widely published systems – Virtual Workspaces [25],
In-VIGO [1], and Shirako [24] – all require the addition of system-specific mid-
dleware at both the execution and submission endpoints. In some cases, these
systems require outright replacement of entire middleware stacks. With such
requirements imposed on both the hosting site and the user, these lease-oriented
systems are not transparent and cannot be easily deployed in a non-disruptive
fashion. In contrast, a completely autonomic system would adapt to changing
workloads and resource availability, without requiring manual intervention by
either the user or system administrators [45].

The system presented here is a clustering overlay for individual grid re-
sources, which permits Virtual Organizations of federated grid users to create
custom computational clouds with private scheduling and resource control poli-
cies. This system is designed according to a specification known as the Virtual
Organization Cluster Model, which stipulates the high-level properties and con-
straints of Virtual Organization Clusters. This model is technology-agnostic,
permitting the use of different virtualization technologies, networking systems,
and computational grids. A prototype cluster designed according to the model
demonstrates that a viable implementation of the VOC specification is possible.

The motivation for the Virtual Organization Cluster Model and Virtual Or-
ganization Clusters (VOCs) built according to the model is to create a vir-
tual cluster environment that is homogeneous across sites, autonomically self-
provisioned, transparent to end users, implementable in a phased and non-
disruptive manner, optionally customizable by Virtual Organizations, and de-
signed according to a specification that permits formal analysis. Transparency

2



Figure 1: A use case for Virtual Organization Clusters, in which pilot jobs are used to reserve
physical resources to host virtual machines. User jobs are then privately scheduled to run
in the virtual machines, using an overlay network to create a virtual cluster. It should be
noted that the user submits her job(s) to a resource abstraction of the VO Server, which
autonomically handles the creation and destruction of virtual environments. The user is
unaware of the details of this environment management.

is achieved by designing the system so that no submission endpoint middleware
is needed, and VOC technologies can be added to execution endpoints with
minimal disruption of existing middleware. Moreover, grid sites that choose to
provide VOCs may provide them transparently, so that neither the user nor the
VO is aware that execution is actually occurring on a VM. Conversely, a site
and a VO may choose to permit the VO to supply the VOC image, thereby
allowing the VO to have optional administrative access for software stack and
policy customization.

The remainder of this paper is organized as follows. Related work is pre-
sented in section 2, after which the high-level Virtual Organization Cluster
Model is described in section 3. Section 4 describes a prototype implementation
of a Virtual Organization Cluster and associated physical testbed, with test re-
sults following in section 5. Finally, section 6 presents conclusions and describes
future work.

3



2. Related Work

Virtualization at the Operating System (OS) level, originally developed for
IBM mainframe systems in the late 1960s, permits an operating system installed
directly on the computational metal, known as the “host” system, to run a second
“guest” operating system or “appliance” inside a virtual container. Virtualiza-
tion systems allow architecture-compatible software systems to be decoupled
from the underlying physical hardware implementation, thereby allowing com-
putation to be location independent. [13] Virtualization of grid systems, first
proposed in [14], offers substantial benefits to grid users and system administra-
tors. Users of virtualized systems can be granted administrative access rights to
their virtual machines, thereby allowing end-user customization of the software
environment to support current and legacy applications. Since the hardware
administrators retain control of the Virtual Machine Monitors (VMMs) or hy-
pervisors, coarse-grained resource controls can be implemented on a per-VM
basis, allowing hardware resources to be shared among different VMs. [14]
Higher-level system components may also be virtualized; examples include dy-
namic service overlays [2], cloud storage frameworks [22], and virtual networking
systems such as ViNe [44], VNET [42], VDE [8], and IPOP[20]. Virtualization
at the application layer has been realized in systems such as In-VIGO [1].

Globus Virtual Workspaces, implemented as part of the Globus Nimbus
toolkit, provide a lease-oriented mechanism for sharing resources on grid sys-
tems with fine-grained control over resource allocation. A Virtual Workspace is
allocated from a description of the hardware and software requirements of an
application, allowing the workspace to be instantiated and deployed on a per-
application basis. Following the construction of the environment, the Workspace
must be explicitly deployed on a host site, after which it can be directly ac-
cessed to run computational jobs. [25] By utilizing a leasing model, Virtual
Workspaces can provide high-level, fine-grained resource management to deliver
specific Quality of Service guarantees to different applications using a com-
bination of pre-arranged and best-effort allocations [40]. By leasing multiple
resources simultaneously, Virtual Workspaces may be aggregated into clusters
[16].

Selection and final customization of VM appliances to match the require-
ments of individual jobs are accomplished via “contextualization,” a process by
which job requirements are used to make minor configuration changes, such as
network and DNS settings, to an existing appliance [4, 27]. Contextualization
is done once per VM invocation, just prior to boot time, and involves injecting
configuration data into the VM image prior to initialization of the instance.
A centralized “context broker” provides an XML description of the configura-
tion parameters to be set on a per-appliance basis. [26] This contextualization
process may occur during workspace scheduling [18].

For performance reasons, workspace jobs should have sufficient run length
so as to make the overhead of leasing and starting a workspace relatively small.
Given the non-trivial data copy overheads involved with constructing a workspace,
it has been proposed that overhead be treated as a property of the job execu-

4



tion site, instead of charging the overhead to the user as part of the resource
allocation [39]. Providing a combination of pre-arranged and best-effort leases
has been shown to have better aggregate performance than a traditional best-
effort scheduler without task preemption, while approaching the performance of
a traditional best-effort scheduler with task preemption [41][40].

Another lease-oriented mechanism for grid system virtualization is Shirako
[24], which allows resource providers and consumers to negotiate resource allo-
cations through automated brokers designed around a self-recharging currency
model [23]. Back-end cluster provisioning is provided by Cluster-On-Demand
(COD) [7], an automated system that performs rapid reinstallation of physi-
cal machines or Xen virtual machines [21]. An application of Shirako, called
the Grid Resource Oversight Coordinator (GROC), permits physical resources
to be leased by individual Virtual Organizations for the purpose of deploying
completely virtualized grids, which are accessed by end users through existing
Globus middleware. Each physical grid site hosts a self-contained virtual cluster
belonging to the same VO, without spanning of individual clusters across grid
sites. [34]

Autonomic virtualization overlay systems have been devised for the purpose
of extending local clusters to utilize idle resources available on other clusters
within the same local area. VioCluster is based on the concept of dividing each
cluster into a physical and a virtual domain, where the virtual domain may
be borrowed and administered by another group within the same entity. Vir-
tual domains are transparently and autonomically resized by means of a broker
application, which trades machine allocations between groups by following ex-
plicitly configured policies. This brokering process is transparent to end-users,
permitting the virtualized cluster to be used as if it were a regular physical
cluster. [37] By utilizing the Violin overlay network, virtual domains on several
different physical clusters may be combined into a single execution environment
with a private network space [36].

Dynamic Virtual Clustering allows clusters of virtual machines to be in-
stantiated on a per-job basis for the purpose of providing temporary, uniform
execution environments across clusters co-located on a single research campus.
These clusters comprise a Campus Area Grid (CAG), which is defined as “a
group of clusters in a small geographic area . . . connected by a private, high-
speed network” [10]. Latency and bandwidth properties of the private network
are considered to be favorable, thereby allowing a combination of spanned clus-
ters to function as a single high-performance cluster for job execution. However,
the software configurations of the different component clusters may differ, as the
component clusters may belong to different entities with different management.
DVC permits Xen virtual machines with homogeneous software to be run on
federated clusters on the same CAG whenever the target cluster is not in use by
its owner, thereby allowing research groups to increase the sizes of their clusters
temporarily. [10]

Another approach to providing virtualization services at various levels in a
grid system is to modify the scheduling system, the application itself, or both.
The In-VIGO system dynamically utilizes virtual machines, virtual networks,

5



and virtual interfaces to support specially modified applications [1]. By modi-
fying parallel applications to become self-scheduling at the user level, adaptive
workload balancing can be used to improve parallel application performance
without the introduction of system-level virtualization [28]. Conversely, the
CARE Resource Broker enables applications to be scheduled in dynamically al-
located virtual machine containers through a custom scheduling interface that
is resource-aware [38].

Virtual Organization Clusters [31] differ from lease-oriented systems such
as Globus Nimbus and Shirako, in that the virtual clusters are created au-
tonomically and are dynamically provisioned in response to increasing work-
loads for the associated VO [32]. VOCs remain transparent to end users and
to non-participating entities, while enabling participating VOs to use overlay
networks, such as IPOP [20], to create virtual environments that span multi-
ple grid sites. Unlike Campus Area Grids and VioCluster environments, how-
ever, these disparate grid sites are connected via low-bandwidth, high-latency
networks. These unfavorable connections, coupled with overheads introduced
by the addition of virtualization systems, make VOCs better suited to high-
throughput, compute-bound applications than to high-performance applications
with latency-sensitive communications requirements [12]. Unlike systems that
require application modification or dedicated submission portals, VOCs can in-
teroperate with existing schedulers and job management middleware.

3. Virtual Organization Cluster Model

The Virtual Organization Cluster Model describes the high-level properties
and constraints of Virtual Organization Clusters. VOCs may be implemented
using a wide variety of technologies and specific techniques. The VOC Model
does not require any particular choice of virtualization system, overlay network,
or middleware layer, nor does the model constrain implementations to a single
grid or fixed set of Virtual Organizations. Instead, the model presents a design
philosophy and formal architectural specification for VOCs. Any virtualized
environment system whose design is compatible with the VOC Model can be
called a Virtual Organization Cluster.

In order to give a precise definition of a Virtual Organization Cluster (section
3.3), it is first necessary to describe the separation of administrative domains
(section 3.1) and define a few key terms (section 3.2).

3.1. Separation of Administrative Domains

The Virtual Organization Cluster Model specifies the high-level properties
of systems that support the assignment of computational jobs to virtual clusters
owned by single VOs. Central to this model is a fundamental division of respon-
sibility between the administration – and associated policies – of the physical
computing resources and the virtual machine(s) implementing each VOC, per-
mitting a division of labor between physical and virtual system administrators
[19]. For clarity, the responsibilities and policy decisions of the hardware owners

6



Figure 2: Implementations of Virtual Organization Clusters divide the grid into administrative
spaces: each grid site has Physical Administrative Domain (PAD) that includes the hardware
and software services needed to execute virtual machines. Each VOC is an isolated Virtual
Administrative Domain, into which scientific software applications, computational libraries,
and supporting programs are installed. Different administrative domains in this model may
have different administrative staff and independent policies.

7



are said to belong to the Physical Administrative Domain (PAD). Responsibil-
ities and policy decisions delegated to the VOC owners are part of the Virtual
Administrative Domain (VAD) of the associated VOC. Each physical cluster
has exactly one PAD and zero or more associated VADs. Figure 2 illustrates
this division of responsibility.

Physical Administrative Domain

VOCs are executed atop physical computing fabric made available by dif-
ferent organizations over a standard grid computing platform such as the Open
Science Grid [33]. Each of physical site on the grid is an isolated Physical Ad-
ministrative Domain (PAD), managed independently from the VOCs it hosts.
The PAD contains the physical computer hardware (see figure 2), which com-
prises the host computers themselves, the physical network interconnecting
those hosts, local and distributed storage for virtual machine images, power
distribution systems, cooling, and all other infrastructure required to construct
a cluster from hardware. Also within this domain are the host operating sys-
tems and central physical-level management systems and servers, as well as the
system policies applied to both the hardware and software. Fundamentally,
the hardware cluster provides the hypervisors needed to host the VOC system
images as guests.

Virtual Administrative Domain

Each Virtual Administrative Domain (VAD) consists of a set of homogeneous
virtual machine instances spawned from a common image and dedicated to a
single Virtual Organization (VO). A VAD may interact with its underlying
Physical Administrative Domain in one of three ways. In the simplest case, a
single virtual machine image is used to spawn all the VOC nodes in the VAD,
each of which connects to a shared scheduler provided by the PAD. This case
permits a physical site to use a VOC to sandbox all jobs from a single VO in a
manner transparent to the VO itself. Alternatively, the VO may supply a second
VM image to be used as a virtual head node and dedicated grid gatekeeper on
each physical site. Finally, the VO may provide a dedicated head node and
grid gatekeeper on a remote site, utilizing a private overlay network (depicted
in figure 2) to schedule jobs on the VOC nodes.

A major benefit of the VOC Model design is that few constraints are placed
on the VM. The VO has great flexibility in selecting the operating system and
software environment best suited to the requirements of its users. Of the few
constraints that do exist, the primary ones are as follows:

• Image Compatibility. The VM image must be in a format usable by
the Virtual Machine Monitor (VMM) or hypervisor software in use at the
physical site(s) where the VOC will be executed. A proposed solution to
the image format problem is presented in the Open Virtualization Format
specification [9].

• Architecture Compatibility. The operating system running in the VM

8



must be compatible with the system architecture exposed by the VMM or
hypervisor.

• Dynamic Reconfigurability. The guest system inside the VM must be
able to have certain properties, such as its MAC address, IP address, and
hostname, set at boot time or immediately prior to boot.

• Scheduler Compatibility. When only a single image file is used with a
shared scheduler provided by the physical site, the scheduler interface on
the VM must be compatible with the shared scheduler.

3.2. Terminology

In order to give a precise definition to the concept of Virtual Organization
Clusters, and to provide a framework for evaluating the behavior and perfor-
mance of VOCs, some preliminary terminology is necessary. These terms are
defined in abstract grid computing contexts to avoid circular definitions.

Definition 1. A grid technology is transparent to an entity if the entity can uti-
lize the technology through existing grid middleware services that are installed
as part of a standard grid interconnection system, without the addition of any
extra middleware. Furthermore, the grid technology must also be transparent
according to the definition presented in [11]: access to the technology must be
accomplished via services and not by direct connection to specific systems.

Transparency is a key issue in the design and prototype implementation of
the VOC Model. Most virtualized grid systems require the addition of specific
middleware, and perhaps replacement of existing middleware, at both the exe-
cution endpoint and the submission endpoint in order to utilize virtualization
capabilities through the acquisition of leases [1, 24, 25]. As a result, imple-
menting these systems requires a substantial investment of resources for both
cluster administrators and cluster users. Moreover, requiring users to access
leased environments directly violates the original principle of transparency re-
quired by Enslow [11]. By extending the concept of transparency in definition
1 to include middleware, systems that claim this property must be usable by
an end-user equipped only with the standard grid access tools in existence and
installed before the addition of the new technology. Ideally, the user would
also be unaware of the existence of the new system. If this property can be
satisfied, then administrative action is only required at the computational sites
where the system is to be deployed, minimizing disruption to the existing grid
infrastructure.

Definition 2. A job is compatible with a cluster if the job is executable using
the hardware, operating system, and software libraries installed on the cluster.
The cluster in this case may be physical or virtual.

For a given cluster system, the compatible fraction of jobs belonging to an
entity is the ratio of compatible jobs belonging to that entity to the total number
of jobs on the grid belonging to that entity. An entity is compatible with a

9



cluster if the compatible fraction of jobs belonging to that entity is non-zero on
the cluster.

Compatibility refers to the ability of a cluster system, whether physical or
virtualized, to run a job with the available hardware (or virtual hardware) and
installed software. Several different measures of compatibility may be considered
when evaluating virtualized clusters, including the breadth of compatible VOs
and the total proportion of compatible jobs across all VOs. Implementation of
a new cluster technology might enable the cluster to support a larger number
of different VOs; however, such an implementation might simultaneously reduce
the previously compatible fraction of jobs for VOs already supported, reducing
the total proportion of grid jobs that are compatible with the cluster. A trade-off
may arise between these two measures for certain design decisions.

It is important to note that compatibility does not necessarily imply that
a cluster is willing to run jobs from all compatible VOs. Local policies may
restrict cluster usage to a specific subset of VOs, even though the cluster is
compatible with a larger set of VOs. This distinction between capability and
policy is formalized by the following definition:

Definition 3. An entity is authorized on a specific cluster if local cluster policies
permit the entity to run jobs on the cluster. An unauthorized entity is denied
use of a cluster system only by policy and not by an insufficiency of mechanism.

The main purpose of definition 3 is to separate mechanism from policy when
defining and evaluating technologies such as VOCs. It would be incorrect to
treat a VO as incompatible if VO jobs were rejected by the cluster simply
because local policy did not provide execution services to that VO. Technical
compatibility, or the ability to run jobs within particular environments, is a
separate issue from that of accounting for actual resource usage or determining
the set of VOs to be given access to a particular resource.

Definition 4. An entity is termed to be participating in a grid-enabled tech-
nology if the entity chooses to utilize the specific capabilities of the technology,
including, but not limited to, the use of specific middleware or specific configura-
tion settings. Entities that choose not to deploy the technology under discourse
are termed non-participating.

In order to facilitate transparency and enable partial deployment of new
grid-enabled technologies such as VOCs, it is necessary to accommodate the
different schedules upon which different entities may choose to deploy the tech-
nology. Moreover, some entities may choose not to deploy the technology due to
technical or policy constraints. Achieving interoperability of VOCs with existing
grid systems requires that the grid remain able to support both participating
and non-participating entities.

3.3. A Formal Definition of Virtual Organization Clusters

Utilizing the previous definitions, a Virtual Organization Cluster may be
formally defined as a set of homogeneous computational resources that:

10



• Consists entirely of virtual machines that are scheduled and hosted by
commodity physical resources on the grid;

• Autonomically changes size in response to changing workload demands;

• Is owned by, or dedicated to, exactly one Virtual Organization;

• Is transparent to end users;

• Is transparent to non-participating virtual organizations;

• Provides a Virtual Administrative Domain to participating VOs; and

• Optionally permits participating VOs to utilize a private overlay network
to span resources across physical sites, receive jobs from a remote sched-
uler, and access private resources.

A VOC is effectively a set of compute nodes in the traditional cluster computing
sense. The scheduling of jobs on these compute nodes may be performed by
a shared local scheduler on the same physical site as the VOC, by a dedicated
virtual head node on the same physical site as the VOC, or by a central scheduler
accessible via an overlay network. The flexibility afforded by this definition
permits a wide range of VOC deployments, from a transparent system provided
on behalf of a Virtual Organization without any involvement of the VO itself,
to a fully overlaid environment with a private scheduling and policy domain
directly manageable by the VO.

Figure 3 depicts two VOCs dedicated to two separate VOs. In this case,
VO1 is non-participating and thus chooses not to deploy VOCs or any related
middleware. Nevertheless, Site 2 provides VO1 with a transparent VOC, so that
all VO1 user jobs on Site 2 run within virtual machines. Simultaneously, VO2

chooses to utilize a VOC with a private overlay network. End user jobs from
users affiliated with VO2 are submitted directly to the private head node owned
by VO2, and VOC nodes are autonomically started on both sites in response to
the size of the scheduler queue. VO2 user jobs are then privately scheduled and
routed by means of an overlay network.

4. Prototype Implementation

In order to evaluate the viability of the Virtual Organization Cluster Model,
a small prototype system was constructed (figure 4). The physical hardware con-
sisted of 16 dual-core compute nodes, a private network using switched gigabit
Ethernet, 9 dual-drive storage nodes using the PVFS [6] distributed filesystem,
and a private head node. Slackware Linux 12 was installed on these systems
initially, but this installation was later replaced CentOS 5.2. Up to 32 single-
core, or 16 dual-core, virtual machines could be started to provide VOC nodes,
using the Kernel-based Virtual Machine (KVM) hypervisor for virtualization
[35]. A shared head node with a Globus [17] interface to the Open Science
Grid [33] was created as a virtual machine. This shared head node provided a

11



Figure 3: Virtual Organization Clusters on a grid system. In this example, Site 2 transparently
provides a VOC to VO1, which does not deploy its own VOCs. VO2 chooses to deploy VOCs
and has a customized environment with private scheduling and resource control.

12



Figure 4: Initial prototype test system. The shared grid gatekeeper (Open Science Grid
Compute Element, or OSG CE) and Condor scheduler were located in a virtual machine for
convenience. These components conceptually belong to the Physical Administrative Domain.

Condor [43] scheduler pool, which was originally used to receive end-user jobs
for a transparent VOC application. A watchdog daemon monitored the Condor
queue, starting and stopping virtual machines by means of a deterministic lo-
cal placement algorithm. The prototype was later extended to test VOCs from
participating VOs by adding support for the Internet Protocol Over Peer-to-
peer (IPOP) [20] overlay network. With this addition, a separate Condor pool
outside the prototype system was used for scheduling end-user jobs, while the
original Condor scheduler on the shared head node was used to receive pilot
jobs submitted externally.

5. Test Results

Tests were conducted on the prototype implementation to evaluate the vi-
ability of Virtual Organization Clusters and the associated autonomic self-
provisioning system. Benchmark testing was used to measure the overheads
introduced by the addition of virtualization technology (section 5.1). The be-
havior of the autonomic self-provisioning system was then observed through
the use of synthetic workloads (section 5.2). Finally, the fault tolerance of the
system was analyzed (section 5.3).

5.1. Virtual Cluster Performance

As an initial measure of virtual cluster performance, boot times were mea-
sured during the initial Slackware 12 installation of the prototype system. Boot

13



Table 1: Boot Times (seconds) for both the physical systems (Slackware 12) and virtual
machines (CentOS 5.1). The physical system boot process involved several timeouts, including
delays for the Power-On Self Test, disk controller management interface, Preboot eXecution
Environment (PXE) for network booting, and a bootloader management menu.

Physical Node VM
Statistic PXE Timeout Total Boot Actual Boot VM Boot

Minimum 105 160 43 61.2
Median 106 160.5 44 65.4
Maximum 107 163 46 70.2
Average 106.4 160.9 44.5 65.5
Std Deviation 0.63 1.03 1.09 2.54

times were measured manually for the physical boot procedure, while a sim-
ple boot timing server was constructed to measure VM booting time, which
received boot starting notifications from the physical nodes and boot complete
notifications from the associated virtual nodes. Timing of the boot process was
performed at the server side, avoiding any clock skew potentially present be-
tween physical and virtual nodes, but possibly adding variable network latency.
Boot times for the physical nodes were subject to even greater variation, as
these were measured manually.

Results of the boot time tests are summarized in table 1. For the physi-
cal system, the boot process was divided into three phases: a PXE timeout, a
GRUB timeout, and the actual kernel boot procedure. While total boot times
ranged from 160 to 163 seconds, 105 to 107 seconds of that time were utilized
by the PXE timeout, and 10 seconds were attributed to the GRUB timeout.
Thus, the actual kernel boot time ranged from 43 to 46 seconds. In contrast,
the virtual compute nodes required 61.2 to 70.2 seconds to boot. These virtual
machines were configured with a different operating system (CentOS 5.1) and
started approximately 10 additional processes at boot time, compared to the
physical systems. As a result, not all the boot time discrepancy could be at-
tributed to virtualization overhead. Nonetheless, the overhead was small enough
that booting the VOC did not require an inordinate amount of time and was
considered acceptable.

To measure the operational performance of the virtual cluster system, the
High Performance Computing Challenge (HPCC) benchmark suite [29] was
used, which included the High-Performance Linpack (HPL) benchmark, Ran-
dom Access benchmark, Fast-Fourier Transform (FFTE) benchmark, Embar-
rassingly Parallel (EP-STREAM and EP-DGEMM) benchmarks, and Random-
Ring network tests of bandwidth and latency. These tests were conducted after
both the host and guest system software was changed to CentOS 5.2 and were
repeated for three cases: a single virtual machine compared to a single host (1x1
process grid), 28 single-core virtual machines compared to 14 dual-core hosts
(7x4 process grid), and 14 dual-core virtual machines compared to 14 dual-core
hosts (7x4 process grid). The overheads of virtualization, as a percentage of

14



Figure 5: High Performance Computing Challenge (HPCC) benchmark overheads normalized
relative to the performance of the host system. Three sets of tests were conducted: a single-
core virtual machine compared to a single HPCC process (1x1 process grid), 28 single-core
VMs compared to 14 physical hosts (7x4 process grid), and 14 dual-core VMs compared to
14 physical hosts (7x4 process grid).

physical performance, were computed for these data sets.

As illustrated in table 2 and figure 5, the HPL overhead for a compute-
bound 1x1 process grid was observed to be 8.77%. For embarrassingly parallel
jobs, the computational overhead (EP-DGEMM) was measured to be 7.98%.
This type of application would be representative of a typical high-throughput
grid job, or a “bag-of-tasks” application [3]. In contrast, MPI jobs that utilized
inter-node communications (HPL, Random Access, Fast-Fourier Transform, and
RandomRing) incurred substantial performance overheads on VMs for a 7x4
process grid. With HPL, these overheads were observed to be 52% for the single-
core test and 85% for the dual-core test. Network latency was suspected for this
observed overhead, as latency has been implicated as a cause of performance
reduction in prior studies involving MPI [30, 29], and RandomRing latencies
were over 100% higher than the metal for all tests.

Improved sustainable memory transfers (EP-STREAM) were observed in
virtualized cases, compared to the physical systems, in the 7x4 process grid
cases. An EP-STREAM overhead of -23.82% was computed for the single-
core case, while the overhead improved to -39.89% for a dual-core VM. These
improvements were attributed to the emulated disk and memory subsystems
present in KVM. Since the EP-STREAM tests show exceptionally high locality
of spatial reference with low locality of temporal reference and high system
memory usage [29], paging to disk was likely in the virtual memory subsystem.
The emulated disk device present in KVM was physically a region of physical

15



Table 2: HPCC Performance
Process Grid 1x1 7x4

Physical VOC Physical Single-Core Dual-Core

Problem Size 10300 10300 58600 58600 58600

G-HPL (GFLOPS) 7.913 7.218 169.807 81.401 25.178

G-PTRANS (GB/s) 0.729 0.635 0.867 0.447 0.069

G-Random Access (GUP/s) 0.002 0.002 0.014 0.004 0.004

G-FFTE (GFLOPS) 0.799 0.461 2.287 1.751 0.399

EP-STREAM Sys (GB/s) 3.866 3.808 59.046 73.110 82.599

EP-STREAM Triad (GB/s) 3.866 3.808 1.845 2.285 2.581

EP-DGEMM (GFLOPS) 8.348 7.682 8.271 7.114 6.901

RandomRing Bandwidth (GB/s) N/A N/A 0.023 0.027 0.007

RandomRing Latency (µs) N/A N/A 74.444 228.383 290.463

Figure 6: Virtual Machine boot delays relative to job submission time. As the watchdog
daemon observed the Condor queue size increasing, VMs were started. These VMs were
recorded as booted once they joined the Condor pool.

memory. Page faults in the guest could have been handled more efficiently than
host page faults due to this emulation, resulting in a higher sustainable memory
transfer rate in the guest.

5.2. Autonomic Self-Provisioning

5.2.1. Dynamic VM Boot Performance

A second set of tests were performed to measure the startup times (includ-
ing the boot delay) for the VMs comprising the VOC. A synthetic workload
comprised of groups of 10 one-second jobs was submitted directly to the local
Condor pool, with a period of 30 seconds between groups. The boot process
for a VM was considered to be complete once it joined the Condor pool, as ob-
served by the watchdog. As shown in figure 6, the first VM booted in response
to incoming jobs joined the pool approximately 60 seconds after the first job
was submitted, or about 55 seconds after the watchdog observed the first job
and started the VM.

Since the watchdog required approximately 6 seconds to start all 10 initial
VMs, a corresponding delay of approximately 7 seconds was observed between
the time at which the first VM joined the Condor pool and the time at which

16



the tenth VM joined the Condor pool. At a test wall time of approximately
38 seconds, the watchdog responded to the second batch of submitted jobs and
began to increase the size of the VOC, continuing until the 44 second mark, at
which point the 16 VM slots were exhausted. The additional 6 VMs joined the
Condor pool between wall clock times of 92 and 101 seconds, corresponding to
boot times in the range of 54 to 57 seconds. No additional VMs could be started
once the slots were exhausted at 101 seconds, after which point the 16 running
VMs were able to complete the remaining 1-second jobs quickly.

Variations in VM boot time were expected, owing to dynamic processes that
must occur during VM boot. These processes include the allocation of memory
to the VM, initialization of the VM kernel, acquisition of a DHCP lease by
the VM, and the starting of run-time services. Based on the test results, a
conservative upper bound of 60 seconds was attributed to the VM boot process.

5.2.2. Autonomic Expansion and Shrinkage

A simple greedy algorithm was used as the autonomic Virtual Organization
Cluster sizing policy. This algorithm, run once each watchdog interval, started
new virtual machines whenever the size of the Condor queue exceeded the size
of the VOC, provided that additional physical resources were available. As jobs
completed and the size of the scheduler queue decreased, VOC nodes were ter-
minated. As illustrated in figure 7, this algorithm proved to be over-responsive
to the batches of short (10-second) jobs submitted directly to the scheduler. The
VOC was rapidly expanded to use all 16 available processor cores at the first
watchdog interval. A delay of approximately 60 seconds was observed while the
VOC nodes booted, after which the short user jobs quickly ran to completion.
Even though additional jobs arrived in the queue while the VOC nodes were
booting, all jobs from the first two batches had completed within 140 seconds.
At this time, the size of the VOC was shrunk to zero, causing the virtual ma-
chines to vacate the physical systems completely. When another batch of jobs
arrived at 180 seconds into the test, all 16 virtual machines had to be restarted,
resulting in another boot delay.

Submission of jobs through the Open Science Grid to the local Globus in-
terface required several extra seconds for each job. As illustrated in figure 8,
this extra latency spread out job arrival in the Condor queue, resulting in a
slower start to the initial VOC. Since these jobs were short (10 seconds), the
Condor queue size never exceeded 13 jobs, and the number of VOC nodes never
reached the maximum size permitted by the physical cluster (16). In addition,
the arrival spacing of the jobs resulted in a minimal size of 2 nodes during the
VOC shrinkage period that occurred between batches. As a result, the VOC did
not completely vacate the physical cluster, although the simple greedy policy
was still over-responsive in terminating VMs.

To simulate the behavior of the watchdog daemon when a participating Vir-
tual Organization utilized a non-transparent VOC, the Internet Protocol Over
Peer-to-peer (IPOP) overlay network [20] was added to the system. A second
Condor queue was run on an external system, along with a second watchdog-
type daemon that generated pilot jobs for submission to the physical Condor

17



Figure 7: Batches of short jobs submitted directly to the Condor queue. As jobs completed,
the VOC nodes were quickly terminated, causing the VOC to vacate the cluster completely.
When additional jobs arrived in a later batch, the entire VOC had to be re-started.

Figure 8: Jobs submitted through Globus. The additional delay of sending jobs across the
grid and through the gatekeeper spread out job arrivals and prevented the VOC from being
terminated completely.

queue via the grid and Globus. These pilot jobs were used to start VOC nodes.
Each VOC node joined the external Condor pool, using the IPOP network, af-
ter completion of the boot process. Overlay scheduling was then performed to
execute the original user jobs on the VOC. As depicted in figure 9, short jobs
arriving in the external Condor queue resulted in the periodic submission of
pilot jobs to the grid site. These pilot jobs arrived slowly relative to the batch
of user jobs, due to the same latency introduced by the grid system and Globus
interface. Once the jobs completed on the VOC, the external watchdog process
terminated the pilot jobs, resulting in eventual termination of the VMs.

5.2.3. Multiple Virtual Organization Clusters

A simulated synthetic workload was tested with a simple greedy scheduling
algorithm, to evaluate the sharing a single physical site among several Virtual
Organization Clusters. This workload contained 8 jobs of varying length, di-
vided into three jobs of 200 seconds in length for the Engage VO, three jobs of
400 seconds in length for the Engage VO, and two jobs of 600 seconds in length
for the Nanohub VO.

As depicted in figure 10, both VOCs could be started and expanded to a
sufficient size so as to provide execution capacity for all eight jobs in parallel,
since the physical site had capacity for 16 virtual machines. When jobs com-
pleted, the sizes of each VOC could be reduced at the next watchdog interval,

18



Figure 9: A single batch of short jobs was submitted to an external Condor queue, resulting
in pilot jobs submitted through the grid to start VOC nodes. As jobs completed, the pilot
jobs were slowly terminated, resulting in termination of the VOC.

Figure 10: Simulation of two Virtual Organization Clusters sharing 16 Virtual Machine slots
on a single physical site. Since there were only 8 total jobs (6 Engage and 2 Nanohub), both
VOCs could expand freely.

and eventually all VOC nodes were removed when all jobs finished. The total
execution time for the makespan was 1200 seconds.

When the number of virtual machine slots available to run the VOCs was
reduced to four (figure 11), the total time for completion of the makespan was
increased to 2100 seconds. Both the Engage and Nanohub VOCs were able
to claim 2 slots at the first watchdog cycle, permitting the Nanohub VOC to
execute both Nanohub jobs in parallel as soon as the corresponding VOC nodes
booted. The Engage VOC was able to execute two jobs in parallel until the
Nanohub VOC completely vacated the physical cluster, after which the Engage
VOC started a third node. Parallelism was increased only briefly, as completion
of the third job led to the removal the third node after only 300 seconds. As
the remaining two Engage jobs completed, the Engage VOC nodes terminated,
leading to a stair-step pattern in the graph.

5.3. Fault Tolerance

One issue was observed in the interaction of the VOC adaptation policy, the
virtualization interface, and the Condor scheduler. When repeated batches of
jobs were submitted to the virtual cluster (figure 12), the size of the VOC was
autonomically expanded and then shrunk. However, the mechanism for termi-
nating the virtual machines during the VOC shrinkage phase involved killing the
associated Virtual Machine Monitor process associated with the VM instance.

19



Figure 11: Simulation of two Virtual Organization Clusters sharing 4 Virtual Machine slots.
Since there were 8 jobs (6 Engage and 2 Nanohub), neither VOC could be expanded to handle
all jobs simultaneously. Until the Nanohub jobs completed, a steady state was observed with 2
VOC nodes per VO. Once the Nanohub jobs completed, the Engage VOC was able to expand
to an extra node to complete its jobs somewhat more quickly.

Since the VM instances were read-only clones of a single, shared VM image, no
data corruption resulted from this mechanism. However, the VOC nodes were
not cleanly removed from the Condor pool during the shrinking process. As a re-
sult, the Condor scheduler occasionally matched jobs to non-existent machines,
resulting in jobs being placed on hold indefinitely. In the experiment depicted
in figure 12, 3 jobs from the final batch were matched to one of 8 VOC nodes
that were no longer in operation but were still present in the Condor collector
database. Due to this mismatch, the 3 VOC nodes that were still actually in
operation at the time were idle. This experiment was terminated manually after
2000 seconds.

Since a Virtual Organization Cluster is hosted across a set of different Physi-
cal Administrative Domains, each of which may have different policies, the type
of fault observed when a VM is uncleanly terminated may occur with relative
frequency on an actual virtualized grid system. A physical grid site may, for
example, impose a wall time limit on the pilot jobs used to start VOC nodes.
The VOC middleware may not be aware of this limit, which could result in
a pilot job – and its associated VM instance – being killed by the site sched-
uler. Similar faults could occur if a VOC exceeds a different resource limit or
if higher-priority jobs on the physical site force immediate termination of the
pilot job.

6. Conclusions

Virtual Organization Clusters provide a mechanism by which individual Vir-
tual Organizations may operate and administer virtual cluster environments
that support the computing needs of VO-affiliated users. As demonstrated by
the prototype system, VOCs can execute High-Throughput Computing (HTC)
grid jobs with reasonable overheads under 9%. Although High Performance
Computing (HPC) applications that use latency-sensitive MPI library routines
experience substantially greater overheads, VOCs still enable execution on phys-
ical sites that lack MPI support. This overhead represents a trade-off between
performance and environment flexibility: whenever a job is directly compatible

20



Figure 12: Slow Condor collector response. As VOC nodes were terminated by means of killing
the associated hypervisor process, Condor was not notified when VOC nodes were removed
from the pool. Thus, some jobs were held indefinitely after matching nodes that were no
longer present in the pool.

with the physical system environment at a grid site, the addition of the VOC
layer will reduce execution performance for that job. However, when the re-
quirements of a job cannot be met by the environment present on the physical
site, the addition of the VOC layer enables job execution when it would be
otherwise impossible. The reduced execution performance in this case would be
superior to the lack of execution that would otherwise result.

Early performance tests of a prototype dynamic VOC scheduler were encour-
aging. The VOC nodes were autonomically added and removed from operation
in response to changing grid loads for the corresponding VOs, without any in-
tervention by the system administrator or other grid middleware. While the
performance of the system was negatively impacted by over-responsiveness of
the simple greedy algorithm in removing VOCs from operation, different poli-
cies could be employed to moderate the responsiveness of the watchdog daemon.
Future work on this system will include the development of formal equations to
account for VOC overheads, investigation of lease-oriented systems as back-end
resources, and improving the fault tolerance of the overlay scheduler.

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, X. Zhu, From vir-
tualized resources to virtual computing grids: the In-VIGO system, Future
Generation Computer Systems 21 (6) (2005) 896–909.

[2] O. Ardaiz, L. Navarro, Grid-based dynamic service overlays, Future Gen-
eration Computer Systems 24 (8) (2008) 813–823.

[3] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, Y. Robert,
Centralized versus distributed schedulers for bag-of-tasks applications,
IEEE Transactions on Parallel and Distributed Systems 19 (5) (2008) 698–
709.

[4] R. Bradshaw, N. Desai, T. Freeman, K. Keahey, A scalable approach to
deploying and managing appliances, in: TeraGrid 2007, Madison, WI, 2007.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud com-
puting and emerging it platforms: Vision, hype, and reality for delivering

21



computing as the 5th utility, Future Generation Computer Systems 25 (6)
(2009) 599–616.

[6] P. H. Carns, W. B. Ligon, R. B. Ross, R. Thakur, PVFS: A parallel file
system for Linux clusters, in: ALS’00: Proceedings of the 4th annual Linux
Showcase and Conference, 2000.

[7] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, S. E. Sprenkle, Dynamic
virtual clusters in a grid site manager, in: HPDC ’03: Proceedings of
the 12th IEEE International Symposium on High Performance Distributed
Computing, 2003.

[8] R. Davoli, VDE: Virtual Distributed Ethernet, in: First International Con-
ference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (Tridentcom 2005), Trento, Italy, 2005.

[9] Distributed Management Task Force, Inc., Open virtualization format
specification (February 2009).
URL http://www.dmtf.org/standards/published_documents/

DSP0243_1.0.0.pdf

[10] W. Emeneker, D. Stanzione, Dynamic virtual clustering, in: 2007 IEEE
International Conference on Cluster Computing, 2007.

[11] P. Enslow, What is a “distributed” data processing system?, Computer
11 (1) (1978) 13–21.

[12] M. Fenn, M. A. Murphy, S. Goasguen, A study of a KVM-based cluster
for grid computing, in: 47th ACM Southeast Conference (ACMSE ’09),
Clemson, SC, 2009.

[13] R. Figueiredo, P. A. Dinda, J. Fortes, Resource virtualization renaissance,
Computer 38 (5) (2005) 28–31.

[14] R. J. Figueiredo, P. A. Dinda, J. A. B. Fortes, A case for grid comput-
ing on virtual machines, in: 23rd International Conference on Distributed
Computing Systems, 2003.

[15] I. Foster, The grid: A new infrastructure for 21st century science, Physics
Today 55 (2) (2002) 42–47.

[16] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, X. Zhang,
Virtual clusters for grid communities, in: 6th IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2006), Singapore, 2006.

[17] I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit,
International Journal of Supercomputing Applications 11 (2) (1997) 115–
128.

[18] T. Freeman, K. Keahey, Flying low: Simple leases with Workspace Pilot,
in: Euro-Par 2008, Las Palmas de Gran Canaria, Spain, 2008.

22



[19] T. Freeman, K. Keahey, I. Foster, A. Rana, B. Sotomayor, F. Wuerthwein,
Division of labor: Tools for growth and scalability of grids, in: 4th Interna-
tional Conference on Service Oriented Computing (ICSOC 2006), Chicago,
IL, 2006.

[20] A. Ganguly, A. Agrawal, P. O. Boykin, R. Figueiredo, IP over P2P: En-
abling self-configuring virtual IP networks for grid computing, in: 20th In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2006),
2006.

[21] L. Grit, D. Irwin, A. Yumerefendi, J. Chase, Virtual machine hosting for
networked clusters: Building the foundations for ‘autonomic’ orchestra-
tion, in: First International Workshop on Virtualization Technology in
Distributed Computing (VTDC ’06), Tampa, FL, 2006.

[22] R. L. Grossman, Y. Gu, M. Sabala, W. Zhang, Compute and storage clouds
using wide area high performance networks, Future Generation Computer
Systems 25 (2) (2009) 179–183.

[23] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, Self-recharging virtual
currency, in: Third Workshop on Economics of Peer-to-Peer Systems
(P2PEcon), Philadelphia, PA, 2005.

[24] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, K. Yocum, Sharing
network resources with brokered leases, in: USENIX Technical Conference,
Boston, MA, 2006.

[25] K. Keahey, I. Foster, T. Freeman, X. Zhang, D. Galron, Virtual workspaces
in the Grid, in: 11th International Euro-Par Conference, Lisbon, Portugal,
2005.

[26] K. Keahey, T. Freeman, Contextualization: Providing one-click virtual
clusters, in: 4th IEEE International Conference on e-Science, Indianapolis,
IN, 2008.

[27] K. Keahey, T. Freeman, J. Lauret, D. Olson, Virtual Workspaces for sci-
entific applications, in: Scientific Discovery through Advanced Computing,
Boston, MA, 2007.

[28] V. V. Korkhov, J. T. Moscick, V. V. Krzhizhanovskaya, Dynamic workload
balancing of parallel applications with user-level scheduling on the grid,
Future Generation Computer Systems 25 (1) (2009) 28–34.

[29] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Rabenseifner,
D. Takahashi, The HPC Challenge (HPCC) benchmark suite, in: Super-
computing ’06, 2006.

[30] M. Matsuda, T. Kudoh, Y. Ishikawa, Evaluation of MPI implementations
on grid-connected clusters using an emulated WAN environment, in: IEEE
International Symposium on Cluster Computing and the Grid (CCGrid03),
2003.

23



[31] M. A. Murphy, M. Fenn, S. Goasguen, Virtual Organization Clusters,
in: 17th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP 2009), Weimar, Germany, 2009.

[32] M. A. Murphy, B. Kagey, M. Fenn, S. Goasguen, Dynamic provisioning of
Virtual Organization Clusters, in: 9th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’09), Shanghai, China, 2009.

[33] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,
K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde,
A. Blatecky, J. McGee, R. Quick, The Open Science Grid: Status and
architecture, in: International Conference on Computing in High Energy
and Nuclear Physics (CHEP ’07), 2007.

[34] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi,
J. Chase, Toward a doctrine of containment: Grid hosting with adaptive
resource control, in: 19th Annual Supercomputing Conference (SC ’06),
Tampa, FL, 2006.

[35] Red Hat, Kernel-based Virtual Machine.
URL http://www.linux-kvm.org

[36] P. Ruth, X. Jiang, D. Xu, S. Goasguen, Virtual distributed environments
in a shared infrastructure, Computer 38 (5) (2005) 63–69.

[37] P. Ruth, P. McGachey, D. Xu, VioCluster: Virtualization for dynamic com-
putational domains, in: IEEE International Conference on Cluster Com-
puting, Boston, MA, 2005.

[38] T. S. Somasundaram, B. R. Amarnath, R. Kumar, P. Balakrishnan, K. Ra-
jendar, R. Rajiv, G. Kannan, G. R. Britto, E. Mahendran, B. Madusud-
hanan, CARE Resource Broker: A framework for scheduling and support-
ing virtual resource management, Future Generation Computer Systems
26 (3) (2010) 337–347.

[39] B. Sotomayor, K. Keahey, I. Foster, Overhead matters: A model for virtual
resource management, in: 2nd International Workshop on Virtualization
Technologies in Distributed Computing (VTDC ’06), Tampa, FL, 2006.

[40] B. Sotomayor, K. Keahey, I. Foster, Combining batch execution and leasing
using virtual machines, in: 17th International Symposium on High Perfor-
mance Distributed Computing (HPDC 2008), 2008.

[41] B. Sotomayor, K. Keahey, I. Foster, T. Freeman, Enabling cost-effective re-
source leases with virtual machines, in: HPDC 2007 Hot Topics, Monterey
Bay, CA, 2007.

[42] A. I. Sundararaj, P. A. Dinda, Towards virtual networks for virtual ma-
chine grid computing, in: Third Virtual Machine Research and Technology
Symposium, San Jose, CA, 2004.

24



[43] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor – a distributed
job scheduler, in: T. Sterling (ed.), Beowulf Cluster Computing with Linux,
MIT Press, 2001.

[44] M. Tsugawa, J. A. B. Fortes, A virtual network (ViNe) architecture for
grid computing, in: 20th International Parallel and Distributed Processing
Symposium (IPDPS 2006), 2006.

[45] D. Xu, P. Ruth, J. Rhee, R. Kennell, S. Goasguen, Autonomic adapta-
tion of virtual distributed environments in a multi-domain infrastructure,
in: 15th IEEE International Symposium on High Performance Distributed
Computing (HPDC’06), Paris, France, 2006.

25


