
Evaluation of Local Networking in a Lustre-Enabled

Virtualization Cluster

Michael A. Murphy1 and Heather K. Harton

{mamurph, hkeown}@cs.clemson.edu

Final Report for CpSc 852 Project

Prof. James Martin

30 November 2007

Technical Report CU-CILAB-2007-1

Cyberinfrastructure Laboratory

Clemson University School of Computing

Clemson, SC 29634-0974 USA

1This material is based upon work supported under a National Science Foundation Graduate

Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this

publication are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

Abstract

Virtualization provides a mechanism by which Virtual Organizations can be isolated from
each other and made independent of physical hardware. Such hardware independence may
require occasional migration of virtual machines from one system to another, necessitating
the use of a networked image store, such as a distributed Lustre filesystem.

In this study, the Local Area Network (LAN) interconnecting a small research cluster was
evaluated to estimate both the actual Gigabit Ethernet bandwidth of single links to server
nodes and the aggregate performance of the central switch under multiple isolated loads. The
primary motivation for this work was to determine if the internal network within the cluster
was operating correctly, in preparation for future virtual machine migration research over a
planned high-speed Wide Area Network (WAN) connection. Both theoretical and empirical
procedures were employed to evaluate the performance of the physical hardware and the
Transmission Control Protocol (TCP) used in the interconnection of the Lustre filesystem.

Theoretical calculations were performed to predict the behavior of TCP using both
standard-sized and “jumbo” frames. For either frame size, it was determined that two TCP
segments would be sufficient to saturate the Category 5 Ethernet cabling between cluster
nodes. Additional TCP segments were found to be necessary to saturate switched links using
jumbo frames. Independent of frame size, it was determined that larger TCP window sizes
would result in more queueing at the switch or the endpoints, which could have the effect of
reducing aggregate performance.

Empirical bandwidth measurements were conducted using the freely available Iperf and
pathChirp tools, resulting in an estimated sustainable bandwidth of around 940 Mb·s−1 for an
end-to-end switched TCP connection between two nodes in the cluster. Actual TCP window
sizes were estimated to be as few as 4 segments, or as many as 90 segments, with switch
queueing delays between about 21 µs and 375 µs. Based on ping test results and traced TCP
connection data, it was likely that the actual TCP window sizes were substantially larger
than necessary to saturate the links. This behavior could have been due to sub-optimal TCP
operation, slow forwarding times through the switch, or a combination of the two.

File transfer performance tests also were conducted, yielding a sustainable file transfer
bandwidth between 288 and 380 Mb · s−1. This substantially lower “bottleneck” bandwidth
was found to be a result of slow transfer speeds at the hard disk drives. Bottleneck bandwidths
appeared to vary between the two models of hard disk installed in different cluster nodes. In
addition, asymmetric read-write transfer speeds were found to be possible with the model of
hard disk used for the Lustre filesystem.

Based on the theoretical calculations and test results, the switch was found to be operating
properly in terms of connection isolation, but some further optimization and analysis of the
switch was found to be needed. Some disruptive network testing was planned once the cluster
could be taken out of operational service, such as changing from standard frames to jumbo
frames and re-testing the bandwidth. Additional research questions, such as the utility of
link aggregation to increase Lustre node bandwidth, were identified.

Contents

1 Introduction 2

2 Background 3
2.1 Network Protocol Issues . 3
2.2 Lustre Filesystem . 4

3 Motivations and Objectives 4

4 Methodology 5

5 Analysis 7
5.1 Network Theoretical Bounds . 7

5.1.1 General Theory . 8
5.1.2 Cluster LAN Using Standard Frames 10
5.1.3 Cluster LAN Using Jumbo Frames . 11

5.2 File Transfer Performance . 13
5.3 Measured Available Bandwidth . 15

5.3.1 Iperf Bandwidth Tests . 15
5.3.2 Iperf Window Sizes and RTT’s . 15
5.3.3 pathChirp Bandwidth Tests . 17

5.4 Hard Disk Bottleneck Bandwidth . 17

6 Conclusions and Future Work 18
6.1 Conclusions . 18
6.2 Threats to Validity . 19
6.3 Future Work . 20

A Tables 21

B Figures 23
B.1 Transfer Test Figures . 24
B.2 Iperf Test Figures . 30
B.3 pathChirp Test Figures . 45

C Scripts and Programs 56

D References 62

1

1 Introduction

The use of Virtual Organizations (VO’s) to organize scientific communities has become
commonplace in the field of grid computing [6]. Virtualization has been proposed to provide
secure, scalable Cyberinfrastructure services for sharing physical resources among different
organizations [5]. Entire grids consisting of virtual machines have been constructed, which
provide the end-user VO with the appearance of dedicated computational resources [1].

Virtual machines offer a variety of advantages over traditional physical machines; these
advantages include dynamic reconfigurability [10] and geographical and physical system in-
dependence [2]. In order to provide hardware independence for a virtual machine, it is
sometimes necessary to migrate a virtual machine to another physical system. This migra-
tion may be accomplished over a Local Area Network (LAN) connection within the same
physical entity [4], or over a Wide Area Network (WAN) connection between multiple enti-
ties. Live migration of virtual machines over the Internet has been shown to be practical by
recent WAN migration research [7].

The Cyberinfrastructure Laboratory at Clemson University contains a small research clus-
ter that will be used for virtual machine testing, supporting VO’s running entirely on virtual
grids. This cluster is scheduled for eventual connection to Oak Ridge National Laboratory
via a 10 Gigabit per second optical fiber link. The storage for this cluster is provided by
a distributed Lustre file system, which will be used to test virtual machine migration over
high-speed WAN connections once the 10 Gb · s−1 connection arrives.

Numerous possible networking issues may affect the operation of the Lustre image store.
At the physical layer, the 1 Gb · s−1 links, and perhaps the switch controlling those links,
have the potential to form a bandwidth “bottleneck” that limits the efficacy of the 10 Gigabit
connection [14]. Alternatively, the location of the bottleneck could be located at the hard
disks in each Lustre node. Variability in service quality may occur due to TCP/IP behavior
resulting from a heavy-tailed distribution of large file transfers [12]. Also, concurrent traffic
from several VO’s on the network path, along with traffic originating from system monitoring
tools at the physical fabric layer, may affect the cluster’s ability to provide effective virtual
machine image transfer [15].

To evaluate the correctness of the LAN setup between Lustre storage nodes, a small
research project has been undertaken. A subset of the numerous potential networking issues
was chosen for analysis as part of this study. Theoretical calculations describing upper
bounds of system performance were performed, and the bandwidths of both the Ethernet
links and system hard disks were measured through empirical tests. From the results of
these experiments, the behavior of the system was analyzed, and conclusions were drawn
about the state of the system. Desirable changes to improve system performance for virtual
machine migration were identified.

The remainder of this paper is organized as follows: section 2 provides an overview of
related work in the area, followed by a discussion of the motivation and objectives for this
project in section 3. In section 4, the experimental methodology is described. Section 5
includes analysis of the theoretical data and empirical test results. Finally, conclusions and
future work are presented in section 6.

2

2 Background

In order to diagnose unexpected issues properly and understand the network behavior
when transferring large files, it is important to study the issues and characteristics of both
the physical networks and the higher-level protocols layered atop the physical links. As a
result of the applications in use in the cluster, the Transmission Control Protocol (TCP) — a
reliable stream transport protocol — will be the primary focus in an attempt to understand
the transport level behavior. Previous research has shown that increasing the bottleneck
bandwidth and reducing self-similarity can improve the performance of a network. In addi-
tion, understanding the side-effects of concurrent connections and slow start of TCP flows
allows for a more informed diagnosis of poor network performance.

2.1 Network Protocol Issues

The “bottleneck” bandwidth of a connection refers to the maximum achievable rate for a
transmission from sender to receiver with no other traffic on the network, and it is distin-
guished from the “available bandwidth,” which is characterized by the “best” transmission
rate over the same path with normal network traffic. The determiner of the bottleneck band-
width is the slowest router in the path. Paxson compared two techniques for determining
the bottleneck bandwidth: packet pair and packet bunch modes (PBM). PBM, or a stricter
packet pair process, should be used for an accurate measure of broadcast bandwidth. [14]

There are strong implications that can be drawn about the overall network performance
when the traffic on a network is self-similar. Park et. al. studied the side-effects of self-
similar traffic. As the self-similarity of network traffic increases in a UDP connection, the
network performance quickly decreases. The same effect is seen with a TCP connection, but
the performance decrease is much more gradual. Park et. al. attributed these performance
decrease to an increase in lost packets and queue lengths that result from self-similar traffic.
[12]

Qiu et. al. studied the effects of concurrent TCP connections. Two assumptions were
made: (a) the bottleneck(s) between two end points result from the access link between
an autonomous system and the Internet backbone; and (b) the access link bottlenecks will
eventually stabilize, and all connections made from behind the same access link share the
same bottleneck. [15] These assumptions were used to study concurrent TCP connections
in which all connections have the same propagation delay, where there is random overhead,
and where the connections have different Round-Trip Times (RTT’s). In each of the cases,
the capacity of the pipe determined the network behavior. [15]

The TCP Slow Start component of congestion control, introduced by Jacobson and Karels,
adds another layer of complexity when attempting to measure bandwidth empirically. The
TCP protocol proposed by Jacobson et. al., and used in modern implementations of TCP, in-
cludes congestion control. The effect of this addition is “self clocking” behavior, which means
that it can adjust automatically to variations in delay and bandwidth. [8] When the slow
start duration is calculated more quickly and precisely, network traffic can be significantly
reduced [20].

3

2.2 Lustre Filesystem

Although the bandwidth estimation issues present with TCP/IP networks are important
factors in the transfer rates and performance that will be observed, the application require-
ments needed to make the best use of such a network are equally important. The distributed
Lustre filesystem, which relies on the TCP protocol for network transfers, has potential issues
that could cause improper or ineffective use of the network. Two important factors are the
links between Lustre filesystem nodes and the switch and the bottleneck bandwidth capacity
of each Lustre Object Storage Target.

Sufficient network bandwidth between Lustre nodes is critical. Both InfiniBand and
Quadrics network technologies have been studied, and both of these systems offer higher
bandwidth than is currently available on Gigabit Ethernet. Both technologies are also based
on protocols other than IP. IP-over-InfiniBand (IPoIB), which emulates the IP protocol on
the InfiniBand links, has been shown to yield lower bandwidth than using InfiniBand directly,
due to the additional overhead. [25] Certain Lustre filesystem operations also parallelize more
efficiently than others, affecting scalability. In particular, meta-data operations do not scale
with an increasing number of Object Storage Servers, or raw data storage nodes. Some
performance increases can be obtained by utilizing additional meta-data storage nodes, but
Lustre limits the number of MetaData Targets to two per filesystem. [25]

It has been shown that Lustre can be used as a practical wide-area filesystem over a 10
Gb · s−1 link. The Object Storage Server (OSS) were configured with a dual-port Qlogic
card, with three Object Storage Targets (OST’s — actual disk partitions) connected to each
Qlogic port. Each OSS had 10 Gigabit Ethernet cards, effectively resulting in 6 OST’s per
node with 10 Gb · s−1 bandwidth. This gave roughly 1.67 Gb · s−1 bandwidth to each OST.
Test results over the 10-Gb · s−1 WAN link showed that data rates of 600-700 MiB · s−1

were possible for single-file reads and writes from and to a 356 TB Lustre filesystem. Due to
Lustre’s client-side caching policy, file sizes of at least twice the main memory in the client
were required to obtain accurate test results. [19]

Harney et. al. posited that a Lustre filesystem to be constructed for virtual machine
migration provide both a fixed address for each machine and an IP-interoperable mechanism
for communicating with the virtual machine, independent of physical location. Although
limited by the slow acceptance of IPv6, Mobile IPv6 was shown to be suitable for providing
this mechanism. In order to redirect connections from the virtual machine to the proper
physical location, a home agent is required on the virtual machine’s “home” server. [7]
Mechanisms for locating virtual machines post-migration are still open research topics.

3 Motivations and Objectives

The primary motivation of this project was to validate the networking configuration of the
“furnace” research cluster located at Clemson University. This cluster has been designed to
support a future striped Lustre filesystem of several terabytes, which will provide an image
store for virtual clustering research. Work is in progress to connect this cluster to Oak Ridge
National Laboratory via a wide-area 10 Gb · s−1 link.

The Lustre storage portion of this cluster was initially configured with one system ded-
icated as a MetaData Target (MDT) node and nine systems operating as Object Storage

4

Targets (OST’s). Each of the ten storage nodes was connected, via Gigabit Ethernet, to
a central switch (star topology) that also connected fourteen general purpose computation
nodes and one head node. The head node functioned as an edge router to the commodity
Internet, via a Gigabit Ethernet connection to the School of Computing network.

At the time of initial construction, it was unknown whether the local area network con-
nection was installed properly. In particular, it was not known if the switch was configured
and operating correctly. Also, although the “append-mode” initial Lustre installation was
known to be inefficient, it was not known if the disk partition scheme selected for Lustre
was appropriate. Finally, there were no performance estimates for large file transfer op-
erations into, and out of, individual Lustre nodes. The primary objective of this research
project was to find answers to these outstanding questions and to determine if the cluster
local networking interconnections were working properly. Since a re-installation of the cluster
operating software was already scheduled, it was also desirable to determine if any config-
uration improvements, such as changing the Lustre partition layout, using link aggregation
to increase node Ethernet bandwidth, or enabling jumbo frames, could be made to improve
system performance.

Testing the operation of the network and disks on the cluster was complicated due to
the shared nature of the system. In order to place some load on the test installation, the
cluster was put into service for undergraduate instructional purposes. Since the system had
to remain available at all times for these users, a number of restrictions had to be placed on
the testing procedures. Specifically, no test that was potentially destructive to any filesystem,
which necessitated substantive networking changes, or which required taking any system out
of service for exclusive use, could be performed. This limitation was especially significant in
that disk performance benchmarks, such as IOZone and Postmark [25], could not be run.

Due to the “append mode” initial installation of the Lustre filesystem, and the lack of
any client device capable of 10 Gb · s−1 Ethernet transfers, it was not possible to test data
transfers on the Lustre filesystem directly. Since entire disks on each Lustre server node had
been allocated for exclusive use by the distributed filesystem, data transfer tests had to be
performed on a second hard disk of an identical model. Limited free space on each second
disk (upon which the operating system was also installed) dictated file size limitations for
data transfer tests.

In addition to link bandwidth tests, it would have been desirable to obtain a PTRANS
benchmark of the physical cluster, which would have enabled better comparison of the clus-
ter’s capabilities with other research and production clusters [9]. Although this benchmark
was originally planned for completion by an undergraduate class, scheduling difficulties pre-
vented its execution.

4 Methodology

To establish upper bounds on the expected performance of the system, theoretical calcula-
tions were performed. Round-trip times (RTT’s) were calculated based upon the maximum
propagation delay times specified for Category 5 Unshielded Twisted Pair (UTP) Ether-
net cable [17]. Based on these RTT’s, and assuming either standard 1500-byte Maximum
Transmission Unit (MTU) Ethernet frames or 9000-byte MTU “jumbo” Ethernet frames, the
behavior of TCP was predicted, including the window size required to saturate the physical

5

links both with and without the switch present. The bandwidth-delay product was computed
as part of the calculation of the TCP window size. Expected application-level throughput
was also estimated.

Additional theoretical calculations were performed to determine the “bottleneck band-
width” [14]. Since large (gigabytes and larger) virtual machine image file transfers were ex-
pected to be disk-bound, this bottleneck was expected to occur at the hard disk. Bottleneck
bandwidth was computed using the manufacturer’s specifications for maximum sustained
data transfer rate [18] as an optimistic upper bound.

Empirical tests of the actual system were conducted to narrow the performance estimates
to more realistic bounds. The most fundamental of these practical observations involved
performing file transfers between Lustre server nodes and other clients within the cluster.
Secure copy (scp) was used to effect these operations. Transfers were performed in two
directions: “inbound” transfers copied the test files from the client to the server, while
“outbound” transfers copied the test files from the server to the client (with the transfer
operation initiated by a client request). Distinct client-server pairs were used for the tests,
with a one-to-one correspondence between client and server, in order to minimize the effects
of client system peculiarities. Two separate file sizes were used to study the effects of caching
at the endpoints: 1.5 GiB (“gibibytes” – binary gigabytes) and 20 GiB. To validate correct
isolation of connections by the switch, the entire test suite was performed twice. First, a
“sequential” test was run between each client-server pair, in which there was no other test
traffic on the network. A “parallel” test was then performed, in which all client-server pairs
performed the transfers simultaneously, with each connection hopefully isolated by the switch.
Finally, to discriminate between hard disk performance on the client nodes and the Lustre
nodes (hard disk models were not identical between the two node types), the 20 GiB file was
transferred between two client nodes, then between two server nodes. For each transfer test,
the total wall clock time required to perform the transfer was recorded.

Following the file transfer tests, bandwidth estimation tests were conducted using the
freely available Iperf [20] and pathChirp [16] packages. Iperf was used to provide a measure-
ment of available TCP throughput by connecting a single client to a single server using a
single TCP stream, thereby estimating the connection bandwidth (throughput plus fixed-size
headers). Peak bandwidth was also estimated through UDP “chirps,” or temporally-varying
bursts of traffic, using pathChirp. Once again, pathChirp tests were conducted by using a
single client to connect to a single server. Each client-server pair was tested both sequentially
and in parallel, to provide additional validation of connection isolation in the switch. As an
additional check on the Iperf upper-bounds, a single discriminatory test was performed using
Iperf to connect multiple TCP streams from a single client to a single server, thereby sharing
the available bandwidth between the two connections.

In order to analyze the actual network RTT’s and TCP window sizes, two additional tests
were conducted using Iperf. In the first of these tests, ping data were collected starting a
few seconds before, and continuing for a few seconds after, an Iperf test run. These pings
were executed from a second client to the oiltank node running the Iperf server. The second
additional test was a standard Iperf test, but the TCP data actually transmitted as part of
the test were recorded using tcpdump [24] and analyzed using tcptrace [11].

To facilitate efficient distribution and execution of the tests, a research application called
Stoker was employed. Stoker, which remains under active development in the Clemson Uni-

6

versity School of Computing, permitted rapid and easy execution of remote commands, both
in sequence and in parallel. Additional scripts were created to post-process data, create visu-
alizations using the open-source GNUPlot [22] application, and output preliminary LATEX[23]
formatting for including the visualizations. The Gnumeric [21] spreadsheet application was
utilized to analyze the results of the data transfer tests. It was important to remember in the
analysis steps that other network services were running at the time the tests were conducted,
since the cluster was never taken out of production to conduct this study. Conclusions about
the operation of the system were drawn, and possible future improvements to the Lustre
server setup were identified.

5 Analysis

The analytical and experimental procedures were effected using the “furnace” cluster, lo-
cated in room 304-D of McAdams Hall at Clemson University. This cluster featured twenty-
five 1U rackmount Dell PowerEdge 860 servers, which were connected together in a star
topology by means of a Dell PowerConnect 6248 Gigabit Ethernet switch with 10 Gigabit
uplink capabilities (see figure 1). One of the servers, with the fully-qualified domain name
furnace.cs.clemson.edu, functioned as a cluster head node and edge router to the com-
modity Internet via the School of Computing network. Ten nodes, designated as oiltank1

through oiltank10, formed a distributed Lustre filesystem. The remaining fourteen nodes,
designated flamejet1 through flamejet14, served as general-purpose compute nodes and
were employed as client hosts in the experimental bandwidth and transfer tests.

Of the ten “oiltanks,” the oiltank1 node was utilized as a Lustre MetaData Target
(MDT), and the other nine hosted Lustre Object Storage Target (OST) partitions. In ad-
dition, oiltank10 provided a Network File System (NFS) exported partition that was used
for cluster user home directories. Each oiltank node had two Seagate ST3500630 Barracuda
ES Serial Advanced Technology Attachment (SATA) hard disk drives, at 500 (decimal) GB
each.

Both the oiltank and flamejet nodes featured dual-core Intel Xeon processors and Gigabit
Ethernet connectivity. Each flamejet node had 4 GiB (binary gigabytes) of Random Access
Memory (RAM), while each oiltank node was supplied with only 2 GiB RAM. Unlike the
oiltank nodes, the flamejets each had a single 80 GB Western Digital hard drive. These
general purpose flamejet nodes were intended for computation-bound operations, unlike the
data-bound oiltank nodes.

5.1 Network Theoretical Bounds

To provide some theoretical bounds for network performance, computations for the max-
imum expected propagation delay, frame transmit time, ack transmit time, and round-trip
time for a stop-and-wait protocol were performed. Since Lustre uses the sliding-window TCP
protocol, the bandwidth-delay product and optimal TCP window size calculations also were
performed.

7

5.1.1 General Theory

Since the behavior of the network under differing Maximum Transmission Unit (MTU) sizes
may vary, the equations needed to predict behavior were first computed for the general case.
Gigabit Ethernet, using Category 5 Unshielded Twisted Pair (UTP) cable, was assumed.
Propagation delay was calculated from the specification for Category 5 UTP cable, which
permits a maximum delay of 548 ns over a single twisted pair per 100 m of cable length [17],
or 5.48 ns per meter. Equation 1 parametrizes the cable propagation delay dc in terms of
the cable length λ:

dc(λ) = λ ·
(

5.48 ns
m

)
(1)

Since Gigabit Ethernet is assumed, the time required to send a single frame over the
cable (tf) can be calculated from equation 2. A frame header of 22 bytes and a 32-bit frame
checksum are assumed.

tf = (MTU + 26) ·
(

8 b
B

)
·
(

1 s
109 b

)
(2)

As VM migrations are assumed to be unidirectional, the ack messages returned to the
sender are expected to be free from return data. Regardless of the MTU actually in use, these
ack replies should consist only of frame, Internet Protocol (IP), and TCP headers, totalling
66 bytes. Equation 3 computes the time required to transmit a single ack (ta).

ta = 66.0 B ·
(

8 b
B

)
·
(

1 s
109 b

)
= 528 ns (3)

If the switch between the sender and receiver is ignored, the Round-Trip Time (RTT) of
a message and associated ack over the Category 5 cable can be computed from equation 4.

RTT = tf + ta + 2 · dc(λ) (4)

Since Lustre uses TCP for its communications, it is desirable to compute the necessary
window size ω required to saturate the physical cable with data. Equation 6 defines this
window size in terms of the Bandwidth-Delay Product (BDP) and the TCP Maximum Seg-
ment Size (MSS). MSS is defined as the link MTU minus the TCP header size (20 bytes). A
method for calculating BDP is presented in equation 5.

BDP = RTT ·
(

109 b
s

)
·
(

1 B
8 b

)
(5)

ω =
⌈

BDP
MSS

⌉
(6)

The number of segments ω from equation 6 represents the integer window size needed
to saturate the physical link, ignoring the presence of the switch. Since the operation of
the switch almost surely affects the operation of the TCP connection between endpoints
connected through its ports, it is necessary to account for its behavior. This computation is
presented in terms of TCP window size (ω) in inequalities 7 through 11. First, the ceiling

8

function in equation 6 is decomposed into inequality 7. To avoid a complex edge case, it is
assumed that ω ≥ 2.

(ω − 1) <
BDP
MSS

≤ ω (7)

Substituting equation 5 for BDP and distributing MSS yields inequality 8:

(ω − 1) ·MSS < RTT ·
(

109 b
s

)
·
(

1 B
8 b

)
≤ ω ·MSS (8)

Simplifying inequality 8 yields inequality 9:

8 · (ω − 1) ·MSS
109

< RTT ≤ 8 · ω ·MSS
109

(9)

Decomposing inequality 9 by substituting equation 4 for the RTT and accounting for a
new two-way switch delay value, ds, yields inequality 10:

8 · (ω − 1) ·MSS
109

< tf + ta + 2 · dc(λ) + ds ≤ 8 · ω ·MSS
109

(10)

Since the RTT is already great enough to mandate a window size of ω > (ω − 1), and
the addition of ds > 0 cannot decrease ω, the lower bound can be dropped. Re-arranging
the relevant part of inequality 10 yields inequality 11:

ds ≤ 8 · ω ·MSS
109

− tf − ta − 2 · dc(λ) (11)

The switch delay ds is a two-way (or round-trip) delay. Assuming the switch is of the
store-and-forward variety, part of the forward delay will involve re-transmitting the original
frame. As the network speed is uniformly Gigabit, with no intermediate slower segments,
this re-transmission time is taken to be the same as the original transmit time, tf . On the
return path, the ack will need to be stored and forwarded, resulting in a transmit time of ta.
Since the transmitting endpoint is presumed to have data to send at all times, queueing may
occur in the switch if data arrives at a rate greater than the forwarding speed of the switch.
Such forward queueing delay is represented by the dq term. Queueing delay is presumed to
be negligible on the return path.

ds = dq + tf + ta (12)

Substituting equation 12 for ds in inequality 11 and solving for dq yields inequality 13,
which specifies the maximum acceptable queueing delay for a TCP connection using window
size ω.

dq ≤ 8 · ω ·MSS
109

− 2 · tf − 2 · ta − 2 · dc(λ) (13)

Given the queueing delay at the switch, the end-to-end RTT can be re-computed to
include the effects of the switch, using equation 14. The results of this RTT calculation
can be “fed back” into equation 5, and the remaining equations and inequalities can be re-
solved for the new RTT. This process could be repeated for increasing maximum values of
dq, yielding a set of conditional bounds.

9

RTT = 2 · tf + 2 · ta + 2 · dc(λ) + dq (14)

The set of conditional bounds that can be computed from the revised RTT in equation
14 are of limited utility, since the throughput of the connection is ultimately limited by the
throughput of the Category 5 UTP cables, which is limited by physical properties. Theorem
1 formalizes this limitation.

Theorem 1. If dq > 8·ω·MSS
109 − 2 · tf − 2 · ta − 2 · dc(λ), calculated using a switch-less RTT

and corresponding ω, then the effect on a TCP connection will be additional queueing at the
switch or the endpoints, not increased throughput.

Proof. Equation 4 specifies the minimum RTT for a single transmission-acknowledgement
exchange, ignoring the switch. Once the switch is introduced, the RTT increases by a factor
of tf + ta + dq (subtract equation 4 from equation 14). Equation 6 specifies the number of
outstanding TCP segments required to saturate the physical link, ignoring the presence of
the switch. If the RTT increases, as it must once the switch is added, then equations 5 and
6 must be re-computed with the increased RTT. The number of segments ω cannot decrease
as the RTT increases, and tf and ta are assumed to be constant. Therefore, as dq increases,
ω may increase to a new value ωs. However, the physical cable link (ignoring the switch) is
already saturated at the original ω, and ωs ≥ ω. If ωs > ω, only ω segments can “fit” on
the wire, and the remaining ωs − ω segments must be either queued or dropped. Assuming
ωs does not exceed the queue sizes, these extra segments will be queued. Since there is
no possible way to increase the wire capacity beyond the saturation level at ω segments,
throughput cannot increase.

The immediate significance of theorem 1 is that it obviates the need to compute a set of
fed-back conditional bounds for different values of dq on the furnace cluster.

5.1.2 Cluster LAN Using Standard Frames

The furnace cluster interconnections consist of single 3.05 m cables running from each
host to a central switch, utilizing a star topology. Since the switch specifications do not
specify a maximum store-and-forward time [3], the presence of the switch is ignored for these
calculations, and the physical connection is treated as a single 6.10 m Category 5 UTP cable.

Under these assumptions, the propagation delay dp is computed according to equation
15, which follows from equation 1:

dp = dc(6.10) = 6.10 m ·
(

5.48 ns
m

)
= 33.4 ns (15)

The time required to transmit a standard frame, tf , is calculated in equation 16:

tf = 1526.0 B ·
(

8 b
B

)
·
(

1 s
109 b

)
= 12.208 µs (16)

Assuming 528 ns for ta (equation 3), the RTT is computed according to equation 17:

RTT = tf + ta + 2 · dp = 12.803 µs (17)

10

Dividing the frame transmission time tf by the RTT yields an efficiency of 95.35% for
a pure stop-and-wait protocol, which could sustain a throughput of 953.5 Mb · s−1. TCP,
however, will be using a sliding window protocol, so it is desirable to know the number of
segments needed to saturate the link. Following equation 5, the Bandwidth-Delay Product
is computed in equation 18:

BDP =
(

12.803 s
106

)
·
(

109 b
s

)
·
(

1 B
8 b

)
= 1600.375 B (18)

The TCP window size ω follows by application of equation 6:

ω =
⌈

BDP
TCP MSS

⌉
=

⌈
1600.375 B
1460 B

segment

⌉
= 2 segments (19)

For a direct endpoint-to-endpoint connection, a 2-segment TCP window will saturate the
short Gigabit Ethernet link. However, the actual connection contains an intermediate switch,
which could require an increased window size to account for switch delay. Since the unknown
delay in the store-and-forward switch is considered to be queueing delay, inequality 13 can
be applied to find the maximum acceptable queueing delay for the two-segment window size:

dq ≤ 8 · 2 · 1460
109

− 2 · 12.280 µs− 2 · 0.528 µs− 2 · 0.0334 µs ≤ 11.152 µs (20)

In the case of standard-sized 1500 MTU Ethernet packets, a TCP window size of 2 seg-
ments should saturate the entire end-to-end link, including the switch, provided the queueing
delay on the switch does not exceed 11.152 µs. Should dq be greater, additional queueing
will occur at the endpoints and/or switch by theorem 1. For the small 2-segment window
size (or even for a larger ω dictated by queueing delays), TCP will exit slow-start quickly.
Relative to the extended transmission times required for large VM image files, the slow-start
procedure should be insignificant.

5.1.3 Cluster LAN Using Jumbo Frames

Assuming the network is using 9000 byte MTU jumbo frames, and that the network inter-
face devices at each endpoint are capable of the full 1 Gb · s−1 speeds for both transmission
and reception, the time to transmit a single jumbo frame, tf , is calculated according to equa-
tion 21. The standard 26 bytes of frame header and checksum are assumed, for a total frame
size of 9026 bytes.

tf = 9026.0 B ·
(

8 b
B

)
·
(

1 s
109 b

)
= 72.208 µs (21)

Although jumbo frames permit packet MTU’s to exceed 1500 bytes, they do not require
larger frame sizes. Therefore, the 66-byte ack message assumption is still valid, and ta =
528 ns. In addition, the cable lengths are exactly the same as in the previous case with
standard 1500 MTU frames. Therefore, the total propagation delay over the cable, dp, is
still equal to 33.4 ns. Round-trip time, again ignoring the effects of the switch, is computed
according to equation 4, resulting in equation 22:

RTT = tf + ta + 2 · dp = 72.802 µs (22)

11

Comparing the transmission time for the jumbo frame, tf , with the total RTT, it is
observed that tf is 99% of the RTT. Thus, the short cable lengths in this situation cause the
RTT calculations to be bound by the transmit time of the jumbo frame. A stop-and-wait
protocol is fairly efficient in this case, wasting only 594 ns of every 72.802 µs, or 0.8%. Thus,
992 Mb · s−1 of throughput may be achievable with stop-and-wait.

Since TCP will use a sliding-window protocol, the Bandwidth-Delay Product (BDP),
computed from the link speed and RTT, is again utilized to estimate the optimal TCP window
size. Equations 5 and 6 are used to compute the window size ω, resulting in equations 23
and 24:

BDP =
(

72.802 s
106

)
·
(

109 b
s

)
·
(

1 B
8 b

)
= 9100.25 B (23)

ω =
⌈

BDP
MSS

⌉
=

⌈
9100.25 B

8960 B
segment

⌉
= 2 segments (24)

From equation 24, a TCP window size of 2 segments should be able to keep the link
operating at capacity with the RTT computed in equation 22. Since these calculations assume
zero delay at the switch, and some delay is almost surely going to occur due to the store-
and-forward algorithm in the switching process, it is necessary to determine the maximum
tolerable switching delay for the calculated TCP window size. Initially, the two-way total
switching delay ds will be calculated in this case. Inequality 11 will be used, resulting in
inequality 25.

ds ≤ 8 · 2 · 8960
109

− 72.208 µs− 0.528 µs− 2 · 0.0334 µs ≤ 70.557 µs (25)

Substituting ds into equation 12, and substituting values for tf and ta yields equation 26:

70.557 µs = dq + 72.208 µs + 0.528 µs (26)

Since dq ≥ 0, equation 26 is a contradiction. Therefore, a TCP window size of 2 segments
is insufficient to saturate the switch link when jumbo frames are used. Assuming no queueing
delay, a revised calculation for RTT can be made by application of equation 14, resulting in
equation 27:

RTT = 2 · 72.208 µs + 2 · 0.528 µs + 2 · 0.0334 µs + 0 = 145.539 µs (27)

A new TCP window size ω is computed by re-computing the BDP (equation 5) and using
equation 6. Equations 28 and 29 illustrate these calculations:

BDP =
(

145.539 s
106

)
·
(

109 b
s

)
·
(

1 B
8 b

)
= 18192.35 B (28)

ω =
⌈

BDP
MSS

⌉
=

⌈
18192.35 B
8960 B

segment

⌉
= 3 segments (29)

Back-substituting the revised RTT value and window size into inequality 13 provides the
maximum queueing delay. This calculation is performed as inequality 30:

12

dq ≤ 8 · 3 · 8960
109

− 2 · 72.208 µs− 2 · 0.528 µs− 2 · 0.0334 µs ≤ 69.501 µs (30)

From equation 24, 2 TCP segments are sufficient to saturate the link between the end-
points, assuming no switching delay. However, a minimal switching delay assumption requires
3 TCP segments to saturate the end-to-end link. By theorem 1, queueing must occur at the
switch and/or endpoints. Provided the queueing delay does not exceed 69.5 µs, no additional
TCP segments will be needed to saturate the link, and therefore no additional queueing
should occur beyond that required by the switch.

As shown in inequality 20 for standard frame sizes, a maximal queueing delay of 11.152 µs
is acceptable with standard 1500 byte MTU frames, in order to prevent additional queueing.
For jumbo frames, a 69.501 µs delay is acceptable at the sufficient window size. This jumbo
frame dq is 6.23 times the value of the standard frame dq, with a frame MTU that is 6 times
larger. Therefore, provided that the queueing operation is no worse than O(N) (and does not
have a large constant term or coefficient), the relative queueing time of jumbo frames should
not be significantly greater than that of regular frames. However, the necessity of additional
queueing demanded by theorem 1 could make the actual end-to-end communication times for
jumbo frames longer than for regular frames, owing to the longer absolute queueing delays.
Even so, TCP slow start should be exited quickly with jumbo frames, making the slow start
behavior insignificant in comparison to the long VM image transmit times.

5.2 File Transfer Performance

Empirical file transfer tests were conducted using secure copy (scp) to transfer large files
between a single client node in the cluster and a single Lustre node. Two different file sizes
were used: a 1.5 GiB file actually containing a virtual machine image, and a 20 GiB random
data file representing a larger VM image. Each file was first copied from the client machine
(a “flamejet” node) to the corresponding Lustre server (an “oiltank” node with the same
number) in an “inbound” (to the server) copy test. In a later test, the files were deleted from
the client nodes and copied back from the servers (an “outbound” transfer). Copy operations
were initiated by the client in each case.

Each set of copy operations (inbound and outbound) was performed twice. In the first
test suite, each client-server pair was tested sequentially, so that only 1 copy operation was
occurring at any given time on the LAN. To verify that connections were properly isolated
from each other by the switch, a second parallel test suite was run, in which each client-server
pair was tested simultaneously. Results of the tests are summarized in tables 1 through 3
and figures 2 through 12.

As shown in table 1 and figure 2, transfer times for the 1.5 GiB file tended to be relatively
short, averaging about 34 seconds inbound and about 32 seconds outbound. The differences
between sequential and parallel execution were minor, and much of this difference is likely
due to overhead in Stoker, which in its present form is not particularly efficient. Standard
deviations for both outbound tests, in which files were copied from the server to the client,
were relatively much lower than those for the inbound tests.

For the 20 GiB file size, outbound transfer times were substantially higher than inbound
times (table 2 and figure 3). More variation between outbound tests was observed than
for inbound tests, as evidenced by a larger standard deviation in the results. This relative

13

configuration of transfer times is opposite that of the small transfer times and may be due to
differences in the hard drives and system memory in the different machines. Each flamejet
node uses a lower-performance hard disk than each oiltank node, but each flamejet also
has twice the memory of each oiltank. The 1.5 GiB files are small enough to be mostly or
completely buffered in memory during the transfers; such complete buffering is not possible
for the larger 20 GiB files.

The distribution of transfer times for the smaller file size, as a function of client-server
pair, were fairly random with small temporal variations between client-server pairs (figures 4
through 7). Maxima occurred at client-server pairs flamejet4-oiltank4 and flamejet7-oiltank7
inbound, and flamejet1-oiltank1 and flamejet10-oiltank10 pairs outbound. However, these
maxima were not particularly significant, given the short total transfer times. For the large-
file transfers, interesting minima were observed with client-server pairs flamejet6-oiltank6 and
flamejet7-oiltank7 (figures 8 through 11) on both inbound and outbound transfers. Another
transfer minimum was also noted at the flamejet1-oiltank1 pair, which could be explained by
the fact that the oiltank1 node is running as a Lustre MetaData Target (MDT) instead of
as an Object Storage Target (OST), which might have reduced intra-Lustre communications
at that node. The minima in the other two client-server pairs occurred for unknown reasons
and may warrant further investigation.

Since each type of transfer endpoint (flamejet or oiltank) contained somewhat different
hardware, an additional transfer test was conducted using the 20 GiB file to identify per-
formance differences between the system types. Each flamejet node was equipped with an
inexpensive hard disk of lower performance specification than each oiltank. As expected, a
file copy operation between one flamejet and another flamejet required more time than the
same copy operation between two oiltanks (figure 12).

Based on the average transfer times for the 20 GiB file in table 2, the end-to-end band-
width of the entire system including the hard drives was estimated by dividing the 20 GiB
file size by the transfer times. An inbound mean throughput of 47,510,164 B · s−1, or ap-
proximately 380 Mb · s−1, was observed. The outbound mean throughput was calculated to
be 35,992,001 B · s−1, or approximately 288 Mb · s−1. Both results were calculated using the
sequential transfer test means, and the difference of nearly 100 Mb·s−1 indicates a substantial
performance discrepancy exists between inbound and outbound transfers for files too large
to be buffered in memory. This disparity could be due to non-uniform read-write speeds in
the drives (i.e. a drive could take longer to read data than to write data, or vice-versa) or to
bottleneck bandwidth differences between drive models (see section 5.4).

Since the flamejet-flamejet copy operation required more time than the inbound flamejet-
oiltank operations, a disparity in hard disk performance between the two node types is likely.
Furthermore, since the oiltank-oiltank transfer time was also higher (see figure 12) than the
inbound flamejet-oiltank operations, there is an increased chance that the oiltank node hard
disks have greater write performance than read performance. Therefore, both bottleneck
bandwidth differences and non-uniform read-write speeds are possible within the cluster.
Such differences have the potential to result in asymmetric migration speeds: migration of
virtual machines in one direction (into or out of the cluster) may occur at a different rate
than migrations in the other direction.

14

5.3 Measured Available Bandwidth

Bandwidth measurements were performed using both Iperf and pathChirp, which are two
packages designed for end-to-end network bandwidth estimation. Each of these tests was
performed between a pair consisting of a flamejet client and an oiltank server. Two suites
of each test were performed: one sequential suite in which only one bandwidth measurement
was occurring at any time on the LAN, and one parallel suite in which each client-server pair
was tested simultaneously.

5.3.1 Iperf Bandwidth Tests

Iperf tests were completed first and reported an available end-to-end bandwidth of approx-
imately 940 Mb · s−1 (including the switch). Figures 13 through 32 visualized these results,
which showed consistent available bandwidth for the majority of the time, with occasional
downward spikes. These spikes were attributed to communications between Lustre server
nodes, communications between the Lustre client nodes and the Lustre file system generally,
the Ganglia monitoring system, and other routine monitoring and synchronization systems
running on the cluster nodes. There was no significant difference between the sequential and
parallel test results, which indicated proper connection isolation by the switch.

As further validation of the available bandwidth, an Iperf test was run in which two clients
connected to a single server. The results of this test were visualized in figures 33 through 36.
In figures 35 and 36, the maxima in bandwidth usage by one connection corresponded to the
minima in bandwidth usage for the competing connection. This behavior was expected, since
the sum of the bandwidth used by both connections could not exceed the physical capacity
of the Gigabit Ethernet connection.

5.3.2 Iperf Window Sizes and RTT’s

In order to estimate the effects of the switch on the connection, another Iperf test was
conducted in which a second client node repeatedly pinged the Iperf server machine before,
during, and after the test. The presence of the ping operation did not affect the Iperf results
(figure 37), but the ping RTT’s were greatly affected by the Iperf operation (figure 38). Prior
to the start of the Iperf run, approximately 25 ping RTT’s were observed, with the reported
RTT close to 100 µs. Once the Iperf communications began, the measured RTT increased to
over 300 µs, indicating substantial amounts of queuing time at the switch. The ping RTT’s
returned to approximately 100 µs once the Iperf test ended, suggesting a queueing delay dq

of around 200 µs induced by the Iperf TCP connection.
A final Iperf test was conducted with the client communications recorded using tcpdump

and analyzed with tcptrace. The behavior of Iperf under the recording operation did not
appear to vary substantially from the un-traced behavior (figure 39). Results of the test were
presented in table 4. A considerable amount of data – nearly 33 GiB – was transferred during
this test. Over 2 million individual IP packets were sent, averaging 16,646 bytes (close to the
maximum per packet). Based on the window advertisements, when these IP packets were
divided into frames, 5888-byte windows were utilized for the TCP communications, which
corresponds to 4.03 segments. However, an average of 54,745 bytes of data were allowed to be
un-acked at any time (with a maximum of 130,721 bytes). If TCP/Reno-style sliding windows

15

were used, these outstanding data sizes corresponded to window sizes of 38.18 segments and
89.53 segments, respectively.

Traced RTT’s ranged from 0.1 to 11.6 ms, with an average of 0.4 ms. These times
may be unreliable, however, as tcpdump is sensitive to delays within the kernel at the tracing
endpoint, as well as clock skew in the event that timestamping was employed during the trace
procedure [13]. It is known that the cluster node clocks are definitely not synchronized, as
synchronization operations tend to break the PBS daemons on the oiltank nodes. Assuming
endpoint delays and clock skew have not affected the RTT calculations, the application of
equations 6 and 14 results in a window size of 34.25 (integer value 35) and a maximum
queueing delay dq of 374.46 µs. In this case, queueing delay accounts for almost 94% of the
total 400 µs RTT.

Alternatively, if the advertised window size of 5,888 bytes is considered, an alternate
RTT estimate can be calculated by decomposition of equations 6 and 5. The first step in
the decomposition is recognizing that equation 6 requires an integer number of segments for
ω as a result of the ceiling operation, but the actual TCP implementation operates in bytes
instead of segments. Since 5,888 bytes corresponds to 4.03 segments, and increasing to 5
segments for the fixed MSS would result in an increased BDP (and therefore an inflated RTT
value), the ceiling operation is dropped and 5,888 bytes is used in the numerator. Equation
31 presents this setup for the window size in bytes, ωB :

ωB =
5, 888
1, 460

(31)

Thus, for back-solving equation 5, the window size of 5,888 bytes is substituted for the
BDP. The resulting RTT from this calculation is 47.104 µs. Solving equation 14 for this RTT
value yields a queueing delay dq of 21.57 µs.

There is, of course, a disparity between the theoretical calculations and the observed RTT
and window size values. From theorem 1, a window size larger than 2 TCP segments must
result in queueing when only the wire is considered. However, the store-and-forward nature
of the switch demands queueing, unless the switch can forward a packet in under 11.152
µs (inequality 20). The evidence indicates that a window size of more than 2 segments,
perhaps significantly more than 2 segments, is in use in the observed TCP communications,
which implies queueing. However, a key limiting factor in the theoretical calculations is
that TCP/Reno is assumed. It is likely that the relatively recent Linux kernels in use on
the cluster are using a more enhanced version of TCP, with features such as delayed ack
messages and stateful “learning” mechanisms that can optimize new connections over the
same link using observations from prior connections. Since the cluster was never taken out
of service to effect this study, a substantial history of TCP connections would have been
observed by the kernels on each machine. Finally, the managed switch does appear to have
link and path learning capabilities, as evidenced by QoS and spanning tree settings found to
be present in the configuration interface. It is thus possible that the switch has monitoring
and management capabilities above the network layer, which could potentially affect the
handling of TCP connections.

Another TCP concern is the wide range of possible observed RTT values. Observed round-
trip times range from a potential low of 47.104 µs based on the tcptrace window advertisement
information, to an average high of 0.4 ms (400 µs), also calculated by tcptrace. The observed

16

RTT’s of over 300 µs from the ping test reinforce the possibility of the higher estimate. Since
a theoretical RTT for saturating the Category 5 UTP cables is an order of magnitude lower
(equation 17), there is a potential that switch store-and-forward performance is poor, or that
the TCP protocol is behaving sub-optimally on the cluster. Both of these issues could be
occurring, confounding the analysis: a longer queueing delay on the switch will require TCP
to increase its window size to account for the longer RTT, while an increased window size will
result in additional queueing (theorem 1) and therefore increased queuing delay and total
round-trip time. Since no packets were dropped in the tests (table 4), TCP was at least able
to avoid overrunning the queues, permitting sustained transfer speeds without falling into
congestion avoidance (see figures 13 through 32).

5.3.3 pathChirp Bandwidth Tests

Following the Iperf tests, two suites of pathChirp tests were executed with the same con-
figuration: a sequential suite and a parallel suite, each with pathChirp running on a single
client-server pair. Figures 40 through 59 summarize the results of these tests, which generally
confirm the Iperf bandwidth estimates of around 900 Mb · s−1. However, pathChirp required
manual tuning of packet size (1500 bytes) and interrupt coalescence (5 actual packets per
interrupt) to report “correct” results, which makes the results of these tests somewhat sus-
pect. Furthermore, pathChirp occasionally reported unbelievable values for the bandwidth,
such as the spike over 1050 Mb · s−1 shown in figure 55. A tcpdump and UDP-mode tcp-
trace of the pathChirp data did show that many fewer packets were transmitted to perform
the test (around 72,000 UDP packets total), as was claimed by the authors of the tool [16].
However, the tuning issues and questions about the validity of the interrupt coalescence cal-
culations render pathChirp less useful for realistic bandwidth estimation purposes since a
priori estimates of the bandwidth (from Iperf were needed to perform the tuning.

5.4 Hard Disk Bottleneck Bandwidth

At the start of the study, the location of the “bottleneck bandwidth” in the system was
believed to be at the hard drives. Since the Lustre filesystem nodes are the interesting ma-
chines in the cluster for virtual machine migration purposes, the specifications for the Seagate
ST3500630NS 500 GB Barracuda ES drives [18] were used to perform the theoretical calcu-
lations. According to the manufacturer’s specification, these drives are supposedly capable
of a sustained data transfer rate of 72 decimal megabytes per second. Equation 32 converts
this figure into network-bandwidth units:

Bottleneck Bandwidth = 72
MB
s

·
(

8 b
B

)
= 576

Mb
s

(32)

As observed in the data transfer tests (tables 1 and 2), the actual transfer rates for data
stored on the hard drives were between 288 and 388 Mb · s−1 (see section 5.2) — well below
the manufacturer’s advertised specifications. Since the Iperf tests identified available network
bandwidth around 940 Mb · s−1, the bottleneck almost surely lies at the drive. It is possible
that the manufacturer quotes the specified transfer rate as the theoretical peak transfer rate
between the hard drive cache and system memory, as opposed to the actual transfer rate of

17

data to and from the platters, which would explain the differences in observed and theoretical
bottleneck bandwidth.

6 Conclusions and Future Work

Conclusions are presented regarding the correctness of the cluster networking setup and
expected performance bounds in section 6.1. Link aggregation and jumbo frame options are
also explored. Following the general conclusions, threats to the validity of the conclusions
(caused by weaknesses in the experimental methodology) are presented in section 6.2. Finally,
future changes to the cluster, along with planned and potential extensions of the current
study, are discussed in section 6.3.

6.1 Conclusions

Based on the observed isolation of simultaneous connections between different system pairs
and the observed end-to-end TCP bandwidth around 940 Mb·s−1, the switch appears to have
sufficient internal capacity to handle the multiple loads of a virtualization research cluster.
Although the settings on the switch may not yet be optimal, it does appear to be operating
correctly under the test conditions. The Category 5 UTP cables between each of the Lustre
storage nodes and the switch, and between the ten utilized client nodes and the switch, are
also apparently in operational condition.

End-to-end bandwidth is 94% of the theoretical peak bandwidth, even using standard-size
1500 MTU frames for large transfers. Enabling jumbo frames has the potential to improve
performance by decreasing overhead; however, the opposite result could also occur since
jumbo frames could lead to more queueing and thus longer queue delays. Empirical tests will
be needed to determine the true benefits or drawbacks to enabling jumbo frames.

For large file transfers, the bandwidth bottleneck lies at the hard drive and is in the
approximate range of 288 to 380 Mb · s−1 for a single drive. Doubling the number of Lustre
Object Storage Targets by striping data across both disks in each server node has the potential
to double the bottleneck bandwidth and increase transfer performance, provided bus capacity
is sufficient and stripe overhead is not excessive. For smaller file transfers, the system memory
at each endpoint can be used as a buffer to reduce the impact of the bottleneck. This
buffering should be beneficial for small filesystem operations that result from executing virtual
machines directly from the distributed storage. Large transfer bottlenecks should be limited
to machine migration operations.

Link aggregation is of uncertain utility in the research cluster. In the case of large transfers
conducted at migration time, a bottleneck bandwidth of at most 760 Mb · s−1 (twice the
single-drive bottleneck once data are striped over both drives in each node) will still exist
at each node. Based on the Iperf and pathChirp tests, a single Ethernet link can support
sustained data transfer rates of 940 Mb · s−1. Thus, maximum bottleneck bandwidth is only
about 80% of the measured single-link bandwidth. Even if multiple simultaneous migrations
occur, the hard disk bottleneck bandwidth will have to be shared among the connections,
so increasing the total available Ethernet bandwidth via link aggregation will not yield any
benefits for disk-bound migration operations. Link aggregation does have the potential to

18

improve aggregate performance for multiple simultaneous connections that are not bound by
the hard disk bottlenecks, however.

With the increased bottleneck bandwidth resulting from planned Lustre partitioning
changes, the distributed filesystem should be able to provide acceptable performance both for
conducting virtual machine migration tests and for distributed storage of operating virtual
machines. As a result, the research cluster in 304-D McAdams Hall at Clemson Univer-
sity should provide a state-of-the-art platform for enabling full virtualization of compute
resources. Such virtualization will allow multiple Virtual Organizations to share the physical
compute fabric in a secure manner.

6.2 Threats to Validity

Although the results of the cluster LAN research are encouraging, several factors are present
that could threaten the validity of the results. In particular, the research was conducted under
fairly stringent limitations since the cluster was not taken out of service for the purpose of
testing. As a result, the bottleneck bandwidths are at best estimates of the true hard drive
bandwidth. It is possible that disk or filesystem benchmarks could show a greater bottleneck
bandwidth than the secure copy tests were able to demonstrate. Furthermore, secure copy
may introduce overhead not present in direct Lustre operations, which would also result in an
increase in available bottleneck bandwidth. A fairly modest increase in hard disk bandwidth,
perhaps from 380 to 450 Mb ·s−1, could invalidate the conclusion that link aggregation would
not yield performance benefits for virtual machine migrations. Furthermore, the effects of
jumbo frames on all the empirical test results are unknown.

Conversely, it is also possible that the estimates obtained as a result of this study are
too optimistic. Striping and filesystem overhead in Lustre could be greater than secure copy
overhead, which would have the effect of reducing the estimated bottleneck bandwidth. Poor
virtual machine migration performance, and perhaps even poor virtual disk I/O performance,
could result in such a case. However, this case is considered less likely than the case of per-
formance under-estimation, since the cluster network tests were conducted while the system
was in production and under Ethernet load from system services such as Ganglia.

Effective network performance could be contextually over-estimated in this study, since
the effects of virtual networks between virtual machines on the cluster were not considered
in the total bandwidth analyses. Although the Lustre filesystem nodes may be able to pro-
vide suitable independent bandwidth, virtual machines running on client flamejet nodes may
cause bottlenecks to appear at the client-side. Since the oiltank nodes will not be running
hypervisors, virtual networking should not affect the available bandwidth between each oil-
tank and the switch. However, this bandwidth could be under-utilized by Lustre clients in
the event that large amounts of disk-independent virtual network traffic are saturating the
physical links between the flamejets and the switch. Link aggregation, client Quality of Ser-
vice settings, or other remedial actions may be needed to ensure that a new bottleneck does
not form.

Finally, it is likely that the theoretical estimates of window sizes for TCP transfers will
be difficult to relate to the actual networking operation. For computational and cognitive
tractability, the relatively simple TCP/Reno implementation was used as the basis for the
theoretical analysis. The actual TCP implementation in the Linux kernel is expected to differ

19

from TCP/Reno. Furthermore, the TCP/IP implementations between flamejet and oiltank
nodes may have varied from each other during the empirical testing, since two different kernel
versions were in use on the different node types.

6.3 Future Work

In December 2007, the cluster will be taken out of service for re-installation of the operating
system software on all nodes. A uniform Linux distribution and kernel version will be installed
on each system, so that different kernels are not in use across the physical compute layer. The
kernel will be customized, permitting the selection of specific TCP/IP extensions. System
clocks will be kept synchronized in the upgraded cluster, so that clock skew should be minimal
(or perhaps even insignificant) between nodes.

Prior to the re-installation procedure, the switch will be changed to support jumbo frames.
The Iperf and file transfer tests will be repeated with the 9000-byte MTU frames enabled,
and the performance differences will be analyzed in relation to the standard-size frame perfor-
mance reported in this study. While the systems are down in preparation for re-installation,
additional wiring will be installed to enable link aggregation on each oiltank node. How-
ever, aggregation of Ethernet bandwidth may remain disabled on the switch unless and until
saturation of the single links is actually observed in the network.

As part of the upgrade procedure, the switch settings will be analyzed so that optimal
adjustments may be made to the switch management features. Additional Iperf tests may be
used to evaluate the effects of management settings changes, so that end-to-end bandwidth
can be maximized and switch overhead minimized. Domain expertise for understanding
switch configuration options will be sought from a certain networking professor.

One part of the new software load to be installed on the cluster will be better passive
instrumentation for networking monitoring. Since Iperf is rather disruptive in terms of the
amount of bandwidth used, passive monitoring of Linux kernel parameters through the Web
100 kernel patch is planned [20]. This extra instrumentation should be useful for fine-tuning
switch and network configuration settings post-installation, and the additional monitoring
capabilities should be helpful in determining the impact of virtual networks layered upon the
physical LAN.

Beyond the software re-installation, there are several potential major research projects
that could be conducted as an extension of this study. In particular, the effects of an overlaid
virtual network on top of the physical layer could be considered. Differentiated levels of
service, provisioning of limited physical link capacity over virtual network links, and prioriti-
zation of physical-level management traffic over virtual VO traffic are a few of the additional
research topic areas that remain open for further investigation.

20

A Tables

Table 1: 1.5 GiB File Transfer Times in Seconds
Inbound Outbound

System Pair Sequential Parallel Sequential Parallel
1 32.446 32.87 32.71 32.79
2 33.181 32.54 31.743 32.19
3 34.819 32.45 31.901 32.67
4 37.449 37.57 31.941 32.13
5 32.902 32.4 32.021 32.66
6 34.047 33.39 32.124 33.06
7 39.12 38.79 31.822 32.43
8 32.756 33.46 32.271 32.49
9 34.592 34.78 31.964 32.34
10 35.596 33.02 32.671 32.9

Mean 34.6908 34.127 32.1168 32.566
Std Dev 2.1794 2.2640 0.3366 0.3041
Median 34.3195 33.205 31.9925 32.575

21

Table 2: 20 GiB File Transfer Times in Seconds
Inbound Outbound

System Pair Sequential Parallel Sequential Parallel
1 424.806 424.45 561.165 537.43
2 450.777 450.23 595.677 611.11
3 469.475 460.63 604.786 594.11
4 460.542 447.99 590.421 586.92
5 471.624 471.41 638.563 638.14
6 426.683 426.61 545.708 534.08
7 423.235 425.54 545.791 546.55
8 452.73 452.14 606.582 616.56
9 472.163 473.49 644.974 627.52
10 468.016 469 632.891 638.8

Mean 452.0051 450.149 596.6558 593.122
Std Dev 20.1009 19.1218 36.5921 40.7774
Median 456.636 451.185 600.2315 602.61

Table 3: Large File Transfer Within Groups
Node Group Time (sec)
flamejets 627.684
oiltanks 526.132

Table 4: Iperf TCP Statistics
Parameter Value Units
Data Packets Sent 2,120,239 packets
Total Data Sent 35,294,122,288 bytes
Maximum Window Advertised 5,888 bytes
Minimum Window Advertised 5,888 bytes
Maximum Un-acked Data 130,721 bytes
Average Un-acked Data 55,745 bytes
Throughput 117,640,771 B · s−1

Re-transmitted Packets 0 packets
Minimum Observed RTT 0.1 ms
Average Observed RTT 0.4 ms
Maximum Observed RTT 11.6 ms

22

B Figures

Figure 1: Topology of the furnace Research Cluster

23

B.1 Transfer Test Figures

Figures 2 and 3 summarize the results of the secure-copy file transfer tests. The terminology
convention used in these figures is that “inbound” copy operations are copies into the Lustre
(oiltank) nodes. That is, inbound operations are copies from the flamejet client to the oiltank
server. “Outbound” operations are the reverse: a flamejet client requests the remote file on
the oiltank server. Operations marked as “sequential” are carried out one transfer at a time;
“parallel” transfers occur with all 10 client-server pairs performing the copy operation at the
same time (but isolated from each other by the switch). Details of each type of transfer for
each size of file are shown in figures 4 through 11.

Figure 12 describes the difference between a copy operation among two flamejet nodes
and a copy operation among two oiltank nodes. The purpose of this test was to identify
performance differences between the models of hard drive used in each type of node.

Figure 2: Small File Transfer Comparison

Figure 3: Large File Transfer Comparison

24

Figure 4: 1.5 GiB Sequential Inbound Transfer

Figure 5: 1.5 GiB Parallel Inbound Transfer

25

Figure 6: 1.5 GiB Sequential Outbound Transfer

Figure 7: 1.5 GiB Parallel Outbound Transfer

26

Figure 8: 20 GiB Sequential Inbound Transfer

Figure 9: 20 GiB Parallel Inbound Transfer

27

Figure 10: 20 GiB Sequential Outbound Transfer

Figure 11: 20 GiB Parallel Outbound Transfer

28

Figure 12: Comparison Between flamejet and oiltank Nodes

29

B.2 Iperf Test Figures

The results of the Iperf bandwidth measurement tests are illustrated in figures 13 through
32. Each figure shows the results of a TCP bandwidth-probing test between a flamejet client
and a corresponding oiltank server. Two tests among each client-server pair were performed:
a “sequential” test, in which only 1 pair was tested at any given time; and a “parallel” test,
in which all 10 pairs were tested at once (but isolated from each other by the switch).

Figures 33 through 36 illustrate the TCP behavior when two clients (flamejets 1 and 2)
connect to a single server (oiltank3). Bandwidth is shared between the two clients. Figures
37 and 38 visualize the effects of a concurrent Iperf connection and ping test to a single
server. The Iperf results of a traced client-server bandwidth estimation test are visualized in
figure 39.

30

Figure 13: flamejet1-oiltank1 Sequential Test

Figure 14: flamejet1-oiltank1 Parallel Test

31

Figure 15: flamejet2-oiltank2 Sequential Test

Figure 16: flamejet2-oiltank2 Parallel Test

32

Figure 17: flamejet3-oiltank3 Sequential Test

Figure 18: flamejet3-oiltank3 Parallel Test

33

Figure 19: flamejet4-oiltank4 Sequential Test

Figure 20: flamejet4-oiltank4 Parallel Test

34

Figure 21: flamejet5-oiltank5 Sequential Test

Figure 22: flamejet5-oiltank5 Parallel Test

35

Figure 23: flamejet6-oiltank6 Sequential Test

Figure 24: flamejet6-oiltank6 Parallel Test

36

Figure 25: flamejet7-oiltank7 Sequential Test

Figure 26: flamejet7-oiltank7 Parallel Test

37

Figure 27: flamejet8-oiltank8 Sequential Test

Figure 28: flamejet8-oiltank8 Parallel Test

38

Figure 29: flamejet9-oiltank9 Sequential Test

Figure 30: flamejet9-oiltank9 Parallel Test

39

Figure 31: flamejet10-oiltank10 Sequential Test

Figure 32: flamejet10-oiltank10 Parallel Test

40

Figure 33: Simultaneous Iperf Test: Long-Running Client

Figure 34: Simultaneous Iperf Test: Short-Running Client

41

Figure 35: Simultaneous Iperf Test: Both Clients

Figure 36: Detail of Simultaneous Iperf Test Client Overlap

42

Figure 37: Iperf Ping Test: Iperf Results

Figure 38: Iperf Ping Test: Ping Results

43

Figure 39: Traced Iperf Test

44

B.3 pathChirp Test Figures

The results of the pathChirp tests are visualized in figures 40 through 59. Each test utilized
a connection between a client on a flamejet node and a server on the corresponding oiltank
node. Tests were conducted twice for each client-server pair: once in a “sequential” test run
(one test at a time), and once in a “parallel test run” (all client-server pairs at once, but
isolated from each other by the switch).

To perform the tests, pathChirp sent out test “chirps” at various intervals and in bursts
of varying sizes using UDP [16]. Thus, the measured instantaneous bandwidth varied over
time, peaking around the maximum available bandwidth between the client and server. Each
chirp test was run for five minutes.

45

Figure 40: flamejet1-oiltank1 Sequential Test

Figure 41: flamejet1-oiltank1 Parallel Test

46

Figure 42: flamejet2-oiltank2 Sequential Test

Figure 43: flamejet2-oiltank2 Parallel Test

47

Figure 44: flamejet3-oiltank3 Sequential Test

Figure 45: flamejet3-oiltank3 Parallel Test

48

Figure 46: flamejet4-oiltank4 Sequential Test

Figure 47: flamejet4-oiltank4 Parallel Test

49

Figure 48: flamejet5-oiltank5 Sequential Test

Figure 49: flamejet5-oiltank5 Parallel Test

50

Figure 50: flamejet6-oiltank6 Sequential Test

Figure 51: flamejet6-oiltank6 Parallel Test

51

Figure 52: flamejet7-oiltank7 Sequential Test

Figure 53: flamejet7-oiltank7 Parallel Test

52

Figure 54: flamejet8-oiltank8 Sequential Test

Figure 55: flamejet8-oiltank8 Parallel Test

53

Figure 56: flamejet9-oiltank9 Sequential Test

Figure 57: flamejet9-oiltank9 Parallel Test

54

Figure 58: flamejet10-oiltank10 Sequential Test

Figure 59: flamejet10-oiltank10 Parallel Test

55

C Scripts and Programs

This appendix is a verbatim copy of the README file included in the submitted source and
data package.

README file for CpSc 852 Project, Fall 2007

Mike Murphy and Heather Harton

1. Package Contents

data/ Raw Iperf, pathChirp, and file transfer data

single.X Sequential Iperf test data

mult.X Parallel Iperf test data

seq-in Sequential inbound transfer times (order 1, 10, 2, 3, ...)

seq-out Sequential outbound transfer times (order 1, 10, 2, 3, ...)

inm-time1.X Inbound parallel transfer times, small file

inm-time2.X Inbound parallel transfer times, large file

outm-time1.X Outbound parallel transfer times, small file

outm-time2.X Outbound parallel transfer times, large file

discrim flamejet-flamejet and oiltank-oiltank transfer times

flamejetX_oiltankX_T.instbw pathChirp data at time T

later times are parallel, earlier seq

’X’ is an integer representing flamejet-oiltank pair number

ipdiscrim/ Iperf window/ping trace and pathChirp trace tests

fjot1-pcdumped pathChirp data for pathChirp UDP trace

tcpdump.pc.gz pathChirp UDP trace data (from tcpdump)

iperf.wdowchk Iperf data from tcpdump-traced Iperf test

tcpdump.all.gz tcpdump trace data for traced Iperf test

iperf.pings Iperf data from simultaneous Iperf/ping test

oiltank1.pings Ping data from simultaneous Iperf/ping test

pings.step1 First-step post-processing for ping data

proc_pings.py Post-processor script for pings.step1

*.dat Data files suitable for plotting

plot-* GNUPlot scripts

iperf-XXYYZZ Source code for Iperf

pathchirp-2.4.1/ pathChirp sources, binaries, and added scripts

56

Bin/x86_64/pc_single_new Sequential pathChirp execution script

Bin/x86_64/pc_mult_new Parallel pathChirp execution script

plot/ Plotting scripts and plot outputs (Iperf/pathChirp data)

plot-all Script to plot all data in the data/ directory

plot-single Dependency script to plot a single data set

plot-iperf GNUPlot script for Iperf plot data

plot-pc GNUPlot script for pathChirp plot data

preprocess.py Preprocessor for raw Iperf/pathChirp data to GNUPlot format

report/ LaTeX source for the report

furnace-setup.odg OpenOffice.org Draw graphic of furnace cluster setup

phase1.bib Bibliography file for report references

report.tex Report LaTeX source

simul/ Simultaneous (mult. cxns to same server) Iperf data

simul.13 Raw data for flamejet1-oiltank3 connection (1st cxn)

simul.23 Raw data for flamejet2-oiltank3 connection (2nd cxn)

*.dat Post-processed data suitable for GNUPlot

plot-* GNUPlot scripts

proc_iperf.py Post-processing script for Iperf data

stoker-0.30/ Sequential version of Stoker

stoker.py Main Stoker executable

stoker.conf Stoker configuration file

furnace.scf furnace cluster configuration file

plugins/ Stoker plugins

copy-in-par Parallel inbound copy script

copy-in-seq Sequential inbound copy script

copy-out-par Parallel outbound copy script

copy-out-seq Sequential outbound copy script

iperf-para Parallel Iperf script

iperf-seq Sequential Iperf script

(remainder) Dependencies of Stoker or of above scripts

stoker-0.31/ Parallel version of Stoker

stoker.py Main Stoker executable

stoker.conf Stoker configuration file

furnace.scf furnace cluster configuration file

57

plugins/ Stoker plugins

iperf-install Iperf installation script

pathchirp-comp pathChirp compilation script

(remainder) Dependencies of Stoker

ttimes/ Transfer time data, spreadsheet, and visualizations

all-times Processing script for converting time data for import

times.py Python processing script for a single time data file

transfer_times.gnumeric Gnumeric spreadsheet containing times/plots

(remainder) Raw time data/plots

cu-cilab-2007-1.pdf PDF version of the report

2. Build Instructions

2.1. Iperf

In the Iperf source directory:

./configure

make

make install

For installation on the cluster, the iperf-install script, in stoker-0.31/,

was used:

stoker-0.31/stoker.py all copy iperf*.tar.gz /root

stoker-0.31/stoker.py all exec -s iperf-install

2.2. pathChirp

In the pathChirp source directory:

./configure

make

For compilation on the cluster, the pathchirp-comp script, in stoker-0.31/,

was used:

stoker-0.31/stoker.py all copy pathchirp-2.4.1.tar.gz /root

stoker-0.31/stoker.py all exec -s pathchirp-comp

58

2.3. Scripts

There is no build procedure for included scripts, but recent versions of

bash, GNUPlot, and Python are needed.

3. Executing Iperf

To execute an Iperf test, Iperf must be running on a remote server node

with the command:

iperf -s

On the client node, run:

iperf -c <server> -f m -i 1 -t 300 > <data_file>

where <server> is the hostname or IP of the Iperf server node, and

<data_file> is the desired output file for the results

For simplicity of execution across the cluster, the iperf-seq and iperf-para

scripts in the stoker-0.30 directory were executed to initiate clients.

Stoker 0.31 was used to initiate the servers, with the command:

stoker-0.31/stoker.py oiltanks exec iperf -s

Terminating the servers required CTRL+C to abort Stoker, followed by:

stoker-0.31/stoker.py oiltanks exec killall iperf

4. File Transfer Operations

The 1.5 and 20 GiB test files are NOT included in the submission package,

owing to their extremely large sizes. Since the content of the files is

irrelevant to the transfer tests, suitable data files can be created with

the commands:

dd if=/dev/random of=small_file bs=1M count=1536

dd if=/dev/random of=large_file bs=1G count=20

Depending on the system, /dev/urandom might support faster reads than

/dev/random.

59

The transfer tests themselves, using different filenames than the above

examples, were scripted using the copy-in-seq, copy-in-par, copy-out-seq,

and copy-out-par scripts in the stoker-0.30/ directory. If the file is

already present on the destination system prior to the copy, it must first

be deleted to ensure that the OS does not take shortcuts to avoid copying

the entire file.

5. pathChirp Tests

Execution of pathChirp was facilitated via the parallel version of Stoker.

Senders were started using:

stoker-0.31/stoker.py flamejets exec pathchirp-2.4.1/Bin/x86_64/pathchirp_snd

Receivers were started using:

stoker-0.31/stoker.py oiltanks exec pathchirp-2.4.1/Bin/x86_64/pathchirp_rcv

pathChirp tests were executed by the scripts pc_single_new and pc_mult_new

in the pathchirp-2.4.1/Bin/x86_64 directory (where output also is placed)

6. Miscellaneous Tools

The standard ping and tcpdump tools are already installed on the cluster

nodes. The tcptrace tool was installed on a workstation for use in

post-experiment analysis, using the Synaptic front-end to the Ubuntu package

manager.

7. Post-Processing, Plotting, and Reporting

GNUPlot was already installed on the analysis workstation. The ’plot-all’

script in the plot/ directory, along with its dependent scripts, were

utilized to automate post-processing and plotting of the Iperf and pathChirp

data (which were copied into the data/ directory first). A similar script

was used in the ipdiscrim/ directory to post-process the ping data into a

form suitable for GNUPlot. Necessary GNUPlot scripts are included to make

the process fully automatic.

In the ttimes/ directory is a post-processing script for the raw transfer

time data (most of which was collected manually). This ’all-times’ script

will produce text files suitable for importing into the Gnumeric spreadsheet.

60

This import operation has been done, and the included transfer_times.gnumeric

file contains the imported data and plots. Each plot was also manually

exported to PNG format for inclusion in the final report.

For the simultaneous transfer data in simul/, the post-processing and

plotting were performed manually, using the proc_iperf.py post-processing

script and included GNUPlot scripts.

All resulting .png files from all operations were copied into the report/

directory, where LaTeX was used for the report. It should be noted that

these PNG graphics files are suitable for pdflatex, but EPS conversions may

be needed to run the regular latex program.

61

D References

[1] Sumalatha Adabala, Vineet Chadha, Puneet Chawla, Renato Figueiredo, Jos Fortes, Ivan Krsul, Andrea

Matsunaga, Mauricio Tsugawa, Jian Zhang, Ming Zhao, Liping Zhu, and Xiaomin Zhu. From virtualized

resources to virtual computing grids: the in-vigo system. Future Generation Computer Systems, 21(6):

896–909, June 2005.

[2] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,

and Andrew Warfield. Live migration of virtual machines. In Proceedings of the 2nd ACM/USENIX

Symposium on Networked Systems Design and Implementation, pages 273–286, Boston, MA, May 2005.

[3] Dell Inc. Dell Powerconnect 6200 Series Switches, 2007.

[4] Wesley Emeneker and Dan Stanzione. Dynamic virtual clustering. In IEEE Cluster 2007, Austin, TX,

September 2007.

[5] Renato J. Figueiredo, Peter A. Dinda, and Jos A. B. Fortes. A case for grid computing on virtual machines.

In Proceedings of the 23rd International Conference on Distributed Computing Systems, 2003.

[6] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable virtual

organizations. International Journal of Supercomputing Applications, 15(3):200–222, 2001.

[7] Eric Harney, Sebastien Goasguen, Jim Martin, Mike Murphy, and Mike Westall. The efficacy of live virtual

machine migrations over the internet. In Second International Workshop on Virtualization Technology in

Distributed Computing, Reno, NV, November 2007.

[8] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM ’88, Stanford, CA, August 1988.

[9] Piotr Luszczek, David Bailey, Jack Dongarra, Jeremy Kepner, Robert Lucas, Rolf Rabenseifner, and Daisuke

Takahashi. The hpc challenge (hpcc) benchmark suite. In SC06 Conference Tutorial, Tampa, FL, November

2006.

[10] Hideo Nishimura, Naoya Maruyama, and Satoshi Matsuoka. Virtual clusters on the fly - fast, scalable, and

flexible installation. In CCGRID 2007: Seventh IEEE International Symposium on Cluster Computing and

the Grid, May 2007.

[11] Shawn Ostermann. tcptrace - Official Homepage, 2003. URL http://jarok.cs.ohiou.edu/software/tcptrace/.

[12] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file sizes, transport protocols, and

self-similar network traffic. In Fourth International Conference on Network Protocols, 1996.

[13] Vern Paxson. Automated packet trace analysis of tcp implementations. In ACM SIGCOMM ’97, Cannes,

France, 1997.

[14] Vern Paxson. End-to-end internet packet dynamics. In ACM SIGCOMM ’97, 1997.

[15] Lili Qiu, Yin Zhang, and Srinivasan Keshav. On individual and aggregate tcp performance. In Seventh

Annual International Conference on Network Protocols, 1999.

[16] Vinay Ribeiro, Rudolf Riedi, Richard Baraniuk, Jiri Navratil, and Les Cottrell. pathchirp: Efficient available

bandwidth estimation for network paths. In Passive and Active Measurement Workshop, 2003.

[17] Valerie Rybinski. De-mystifying category 5, 5e, 6, and 7 performance specifications. Technical report, Siemon

Singapore, 1999. URL http://www.siemon.com/sg/white papers/99-12-17-demystifying.asp.

[18] Seagate Technology LLC. Data Sheet: Barracuda ES, 2007. URL

http://www.seagate.com/docs/pdf/datasheet/disc/ds barracuda es.pdf.

[19] Stephen C. Simms, Gregory G. Pike, and Doug Balog. Wide area filesystem performance using lustre on the

teragrid. In TeraGrid 2007 Conference, Madison, WI, June 2007.

[20] Ajay Tirumala, Les Cottrell, and Tom Dunigan. Measuring end-to-end bandwidth with iperf using web100.

In Passive and Active Monitoring Workshop, 2003.

[21] Various Contributors. Gnumeric - The Gnome Office Spreadsheet, 2007. URL

http://www.gnome.org/projects/gnumeric/.

[22] Various Contributors. gnuplot homepage, 2007. URL http://www.gnuplot.info/.

[23] Various Contributors. LaTeX A document preparation system, 2007. URL http://www.latex-project.org/.

62

[24] Various Contributors. TCPDUMP/LIBPCAP public repository, 2007. URL http://www.tcpdump.org/.

[25] Weikuan Yu, R. Noronha, and Shuang Liang D. K. Panda. Benefits of high speed interconnects to cluster file

systems: a case study with lustre. In 20th International Symposium on Parallel and Distributed Processing,

2006.

63

