
Dynamic Provisioning of Virtual Organization Clusters

Michael A. Murphy, Brandon Kagey, Michael Fenn, and Sebastien Goasguen
School of Computing
Clemson University

Clemson, South Carolina 29634-0974 USA
{mamurph, bkagey, mfenn, sebgoa}@cs.clemson.edu

Abstract

Virtual Organization Clusters are systems comprised of
virtual machines that provide dedicated computing clusters
for each individual Virtual Organization. The design of
these clusters allows individual virtual machines to be
independent of the underlying physical hardware, potentially
allowing virtual clusters to span multiple grid sites. A major
challenge in using Virtual Organization Clusters as a grid
computing abstraction arises from the need to schedule and
provision physical resources to run the virtual machines.

This paper describes a virtual cluster scheduler imple-
mentation based on the Condor High Throughput Computing
system. By means of real-time monitoring of the Condor job
queue, virtual machines that belong to individual Virtual
Organizations are provisioned and booted. Jobs belonging to
each Virtual Organization are then run on the organization-
specific virtual machines, which form a cluster dedicated
to the specific organization. Once the queued jobs have exe-
cuted, the virtual machines are terminated, thereby allowing
the physical resources to be re-claimed. Tests of this system
were conducted using synthetic workloads, demonstrating
that dynamic provisioning of virtual machines preserves
system throughput for all but the shortest-running of grid
jobs, without undue increase in scheduling latency.

1. Introduction

Grid communities, such as the Open Science Grid, are
frequently organized around Virtual Organizations (VOs), or
groups of entities and individuals with a shared scientific
mission [1]. A key challenge in providing resources to
these VOs has been the issue of software compatibility
across disparate grid sites. Virtual Machines (VMs) have
been identified as a mechanism for constructing computing
clusters with homogeneous software environments. [2]–[5]
By allowing each VO to provide its own VMs, it is possible
to provide each VO with a dedicated cluster of machines
that execute its jobs exclusively. Clusters constructed in this
way are termed Virtual Organization Clusters or VOCs. [6]

Since VOCs exist entirely within virtual machine space,
entire clusters may be started, stopped, or resized dy-

namically and automatically. Although mechanisms have
been described for the dynamic per-user re-allocation of
physical hardware [7], the rapid creation of clusters of
virtual machines [8], [9], and the provisioning of workspace
environments to meet specific resource constraints [3], [10],
dynamic instantiation and re-sizing of virtual clusters has
remained a challenging issue. Moreover, matching jobs
owned by a particular VO to VO-specific virtual clusters
running on private networks has not been addressed in
the context of virtual clusters. This paper describes an
approach to solving both of these problems by dynamically
instantiating, re-sizing, and removing Virtual Organization
Clusters, while ensuring that grid computing jobs submitted
by users affiliated with a specific VO execute only on the
VOC owned by that specific VO.

The remainder of this paper is organized as follows.
related work is discussed in section 2 while section 3
reviews the model of, and motivations behind, creating
virtual compute clusters on a per-VO basis. This model is
extended in section 4, where the design of the dynamic
provisioning system is described. Results of testing the
provisioning system are presented in section 5, after which
conclusions are presented in section 6.

2. Related Work

Constructing clusters from virtual machines was proposed
in [2] and realized by degrees in In-VIGO [11], VMPlants
[12], and Virtual Clusters on the Fly [9]. In-VIGO focused
on the end-to-end design of a Web service that could employ
VMs as part of a cluster computing system, while VMPlants
and Virtual Clusters on the Fly focused on rapid construc-
tion of virtual clusters. All three systems were particularly
concerned with the issue of specifying and adapting to
requirements and constraints imposed by the user. Unlike
the VOC Model, which specifies how to design and execute
a virtual cluster from existing VMs, these projects were
more concerned with constructing the VMs themselves. In
addition, VMPlants and Virtual Clusters on the Fly had
explicit one-to-one mappings between VM instances and
VM disk images.



Dynamic Virtual Clustering (DVC) [5] implemented the
scheduling of VMs on existing physical cluster nodes within
a campus setting. The motivation for this work was to
improve the usage of disparate cluster computing systems
located within a single entity. Only local jobs originating
from the campus were run inside virtual containers: the sys-
tem was not connected to a computational grid. VMs were
directly attached to existing physical clusters, extending indi-
vidual homogeneous clusters across heterogeneous systems.
Like VMPlants, DVC utilized one virtual disk image per VM
instance, and these disk images were transferred between
physical hosts.

Virtual resources have previously been attached to compu-
tational grids by systems such as Globus Virtual Workspaces
[3], [4], [10]. These workspaces were created from job-
specific specifications, allowing for the dynamic instantiation
of execution containers for grid jobs. While these containers
did provide isolation and customization, they were still tran-
sient environments that were generated from a specification
and instantiated for the life of the job to be executed within.

Dynamically provisioned Virtual Organization Clusters
are not completely orthogonal to these related projects.
Rather, VOCs provide an abstraction for site-independent
computational clusters, in which the VMs are owned and
managed by the VO instead of a middleware system, and
the virtual disk images are not considered transient but
are instead permanent. Dynamic provisioning simply adds a
mechanism for instantiating VMs to create clusters, without
imposing any constraints on how the VM images get created
or what site policies will apply to the systems. Thus,
dynamic VOCs could be used in conjunction with systems
that programmatically generate the initial disk image from
which the VM instances are spawned.

3. VOC Model

The Virtual Organization Cluster Model, described in
detail in [6], provides a means by which each VO can
have its own dedicated cluster and associated administrative
domain. Virtual Organization Clusters using this model are
formed from VMs that are either created at the physical
site where they are to be used, created by grid middleware
(for example, In-VIGO [8]), or manually transmitted to the
physical site by a VO administrator. Unlike systems that
utilize one virtual disk image per VM instance [3], [5],
[9], VOCs are explicitly designed to work with either one
or two disk image files: a single image representing the
configuration of a compute node, and an optional second
image that contains a cluster head node. All compute node
VMs are spawned from the single compute node image using
a copy-on-write mechanism that allows the original image
file to be read-only. The result of this design is that both
disk space and network bandwidth requirements are reduced,
while management of the VOC is simplified.

A major benefit of the VOC Model design is that few con-
straints are placed on the VM. The VO has great flexibility
in selecting the operating system and software environment
best suited to the requirements of its users. Of the few
constraints that do exist, the primary ones are as follows:

• Image Compatibility. The VM image must be in a
format usable by the Virtual Machine Monitor (VMM)
or hypervisor software in use at the physical site(s)
where the VOC will be executed.

• Architecture Compatibility. The operating system
running in the VM must be compatible with the system
architecture exposed by the VMM or hypervisor.

• Dynamic Reconfigurability. The guest system inside
the VM must be able to have certain properties, such
as its MAC address, IP address, and hostname, set at
boot time.

• Scheduler Compatibility. When only a single image
file is used with a shared scheduler provided by the
physical site, the scheduler interface on the VM must
be compatible with the shared scheduler.

For the purpose of discussing dynamic provisioning and
scheduling of jobs on VOCs, the single-image case is
simpler, since there is only one job queue to be maintained at
any location on the system. The implementation described
in this paper thus assumes that each VO provides only a
compute node image, which has the required scheduler client
installed and operable. However, we note that multiple VOCs
could be totally isolated from one another by deploying
separate head node images.

4. Dynamic VOC Architecture

In order to provision Virtual Organization Clusters dy-
namically, grid-enabled middleware was developed. This
middleware enables physical systems to host VOCs that
are connected to the Open Science Grid. Grid jobs arrive
via Globus [1], [13] and are deposited in a job queue on
a gatekeeper system, where the Condor job scheduler [14]
runs. A watchdog process periodically samples the Condor
queue and starts virtual machines that belong to the VO
with which each job is associated. As the number of jobs
in the queue for a particular VO increases, the watchdog
will attempt to start additional VMs to increase the size
of the respective VOC, subject to the limitations imposed
by the hardware and by site policy. When the watchdog
observes fewer jobs in the queue than there are executing
VOC nodes for a particular VO, VMs belonging to the VOC
are terminated. This process ensures that provisioning of
physical resources dynamically adapts to the job loads of
the VOs supported by the grid site, without any manual
intervention or need for external middleware.

It should be emphasized that the design of dynamic
VOCs is strongly biased toward High Throughput Com-



puting (HTC), as opposed to High Performance Comput-
ing (HPC). Thus, there is no provision for enforcing any
type of scheduling deadlines. Jobs execute as VOC node
resources are available. As shown in prior work [6], there
is little motivation for enhancing the dynamic model to
support HPC, given the current state of the technology.
Virtualization performance penalties of over 60% have been
observed with HPC jobs, while performance of latency-
tolerant HTC applications was affected by under 10%. Such
low HTC overheads are believed to be acceptable for HTC
applications.

4.1. Job Tagging

Upon the arrival of a grid job, a corresponding Condor job
is created by Globus. The dynamic VOC system modifies the
Condor ClassAd to add a requirement that the target system
match the VO with which the grid job is associated. Within
the ClassAd, this additional requirement takes a simple name
equals value form, in which the name of the VO is prefixed
to form the name, while the boolean condition of truth is
used as the value.

As an example, the Requirements field for a job associated
with the Engage VO, targeting a 32-bit Linux system, might
have the form:
Requirements = (Arch == “INTEL”) &&

(OpSys == “LINUX”) && (VO_ENGAGE ==
TRUE)

One requirement imposed upon each VOC compute node
VM is that its Condor interface expose a corresponding
ClassAd field to match the VO. Thus, a VOC node that
is owned by the Engage VO should include the following
field in its ClassAd:
VO_ENGAGE = TRUE
With this mechanism, the Condor scheduler will handle

the matching process of a grid job to a corresponding VM
belonging to an associated VO. The dynamic provisioning
middleware, however, is still responsible for starting the VM.
Only after a VM has booted and joined the pool does Condor
proceed to run the job.

4.2. VM Management

Management of the VMs comprising the individual VOCs
is performed entirely by the watchdog, using the Condor
queue as its data source. As the watchdog observes an
increasing number of jobs associated with a particular VO,
it attempts to start additional VMs in order to increase the
size of the corresponding VOC. The maximum number of
available slots in which to start VMs is known to the watch-
dog, and it will not exceed the number of slots pre-specified
by the system administrator. Furthermore, the total number
of slots available across the physical fabric at a single site
may be further subdivided among the VOs supported by that

site. Thus, administrators can enforce flexible site policies
to balance resource usage among different VOs.

Whenever the watchdog observes that a single VOC has
more running VMs than there are jobs belonging to the
corresponding VO in the queue, the watchdog will reduce
the size of the VOC by terminating VMs that are not claimed
by Condor. Since the VOC model [6] specifies the use of
a single read-only disk image to spawn all VMs in a VOC,
termination of VMs is accomplished instantly by means of
killing the virtual machine monitor process. Once a VM has
been terminated, its slot is re-claimed by the watchdog and
added to the pool of unclaimed physical Condor slots.

5. Test Results

A prototype of the dynamic Virtual Organization Cluster
scheduler was implemented, and tests of the system were
conducted using synthetic workloads. For analytical simplic-
ity, the system only supported a single VO, with a single
virtual machine slot per physical host, for a total limit of
16 slots. This simplifying design assumption permitted the
use of a minimalistic physical system policy, so that the
performance and behavior of the unrestricted mechanism
could be observed. As a further simplification, the VMs used
for the VOC in this test were all spawned from a single
20 GB image on a shared filesystem. Figure 1 depicts the
architecture of the test system hardware.

Figure 1. Test System Architecture

Several sets of tests were conducted using the prototype
system, the first of which was an analysis of the approximate
time required to boot each VOC such that it joined the
Condor pool. Since all VMs started from an identical state



— the result of using a single virtual disk image to spawn all
VMs — the boot times were assumed to be constant for all
members of the same VOC. Two test suites were employed
to observe job scheduling behavior. In the first suite, jobs
were submitted locally: that is, directly to the Condor queue,
without any use of Globus. Globus was used as the vehicle
for job submission in the second suite, allowing its effects
to be observed.

Each test suite consisted of five tests, in which the period-
icity of job submission, size of each job group submission,
and run length of each job were varied. These tests were
arranged as follows:

• Two submission groups of 50 jobs each were submitted
with sufficient temporal separation so as to execute the
vast majority of jobs from the first submission group,
prior to execution of the second submission group. This
test was designed to simulate submitting large groups
of jobs in which the results of the first group were
retrieved before submitting the second group.

• Periodic sets of 10 jobs, each with a 10-second execu-
tion time, were submitted 90 seconds apart.

• Similar periodic sets of 10 jobs, each with a 10-second
execution time, were submitted 30 seconds apart.

• Periodic sets of 10 short jobs, each with a 1-second
execution time, were submitted 30 seconds apart.

The purpose of the latter three tests was to observe the
behavior of the system under regular periodic loads, with
variations in the period, job size, and per-job execution
time. Execution times were varied in order to determine
the sensitivity of the system to the boot time latency,
while period and size variations were performed to test the
responsiveness of the watchdog.

5.1. VM Boot Times

Tests were performed using local job submission (directly
to the Condor queue) to measure the boot times for the VMs
comprising the VOC. Boot times were measured from the
time of initiation of the virtual machine to the time at which
the VM joined the Condor pool. Actions performed as part
of the boot procedure included allocation of memory to the
VM, initialization of the VM kernel, acquisition of a DHCP
lease and corresponding hostname by the VM, and the
starting of run-time services. Since all VMs were spawned
from a single image, it was not possible to configure the
network settings statically, requiring dynamic configuration
on a per-instance basis.

Submissions were performed in groups of 10 one-second
jobs, with a period of 30 seconds between groups. The
boot process for a VM was considered to be complete once
it joined the Condor pool, as observed by the watchdog.
As shown in figure 2, the first VM booted in response to
incoming jobs joined the pool approximately 60 seconds

after the first job was submitted, or about 55 seconds after
the watchdog observed the first job and started the VM.

Figure 2. Virtual Machine boot delays relative to job
submission time. VMs are started (VMs Started) in
response to jobs arriving in queue (Jobs). Since each
VM is a virtual Linux machine, there is a boot delay
between VM start time and the time at which the VM
joins the Condor pool and is ready to accept jobs. The
total count of these booted machines (VMs Booted)
corresponds to the size of the Condor pool for the VOC.

Since the watchdog required approximately 6 seconds to
start all 10 initial VMs, a corresponding delay of approxi-
mately 7 seconds was observed between the time at which
the first VM joined the Condor pool and the time at which
the tenth VM joined the Condor pool. At a test wall time
of approximately 38 seconds, the watchdog responded to the
second batch of submitted jobs and began to increase the size
of the VOC, continuing until the 44 second mark, at which
point the 16 VM slots were exhausted. The additional 6 VMs
joined the Condor pool between wall clock times of 92 and
101 seconds, corresponding to boot times in the range of
54 to 57 seconds. No additional VMs could be started once
the slots were exhausted at 101 seconds, after which point
the 16 running VMs were able to complete the remaining
1-second jobs quickly.

Variations in VM boot time were expected, owing to the
dynamic configuration processes that must occur during VM
boot. Based on the test results, a conservative upper bound
of 60 seconds was attributed to the VM boot process.

5.2. Jobs Submitted Locally

To effect completion of the first test suite, batches of jobs
were submitted locally. The first test utilized two groups
of 50 jobs each, with a sufficiently long delay between
submission to allow all but two of the first batch to complete
before submitting the second batch. As shown in figure 3,
the watchdog started the maximum number of VOC nodes
by 20 seconds into the test. The majority of the first set
of jobs completed rapidly between 162 and 198 seconds
wall clock time, or about 178 seconds after submission.
Given the 60-second boot time assumption, the total run



time for 48 10-second jobs on 16 VMs was approximately
118 seconds. Between sets, the watchdog was observed to
reduce the size of the VOC from 16 VMs to 2 VMs. The
second set of jobs completed in approximately half the time
as the first, with a clear “step-down” pattern observed in
the Condor queue between 280 and 310 seconds. While this
pattern can be partly attributed to the need to reboot the VMs
that were stopped during VOC contraction, it is important
to remember that Condor only schedules jobs on a periodic
basis, as it is designed for high job throughput, not high
performance. Therefore, some of the “step-down” behavior
could be attributed to Condor simultaneously starting fewer
jobs than were slots available.

As shown in figures 4 through 6, the watchdog continued
to exhibit predictable behavior similar to that observed in
the first test. Whenever the number of jobs waiting in
the queue dropped below the number of running VMs in
the VOC, the VOC was contracted by terminating VMs.
Conversely, whenever more jobs were waiting than VMs
were running, as long as VM slots remained available, the
watchdog expanded the VOC by adding VMs. A noticeable
delay between queue size and VM count was observed in
both cases, which was the exact behavior expected from
the periodic sampling done by the watchdog. Longer de-
lays were observed between initial job submission and job
completion, owing to the time required to boot the VMs.

The effect of extremely short jobs, or exceptionally long
periods related to job execution length, were evident in
the results, as illustrated in figures 4 and 6. Since the
watchdog employed a simplistic VM scheduling policy,
it terminated VMs as soon as VOC sizes were found to
exceed queue sizes. This aggressive VM termination had a
negative effect on throughput, as illustrated by comparing
figure 4 to figure 5 and figure 5 to figure 6. In the case
of relatively long periodicity relative to execution time,
it was necessary to re-expand the previously contracted
VOC, thereby incurring VM boot delays. For exceptionally
short-running jobs submitted regularly, the initial cluster of
submissions completed quickly, allowing the entire VOC to
be removed from operation. Two interesting, but mutually
disadvantageous, phenomena were observed after the next
group of jobs arrived in the queue (figure 6 at approximately
130 seconds wall time). Due to caching of the virtual
machine monitor process, and its initial read-only VM data,
on the physical host, the VOC nodes were able to boot
somewhat faster during VOC re-start. However, the rapid
job execution and simplistic scheduling algorithm in the
watchdog combined to limit the total size of the VOC to 10
nodes following the re-start. The result of this combination
of properties was exceptionally low throughput following the
restart.

5.3. Jobs Submitted Through Globus

A second suite of identical tests was executed using the
Globus job manager as the submission vehicle. In order
to avoid submission errors, it was necessary to introduce
a small delay of two seconds between the submissions of
individual jobs. As a result, the process of submission of a
batch of jobs through the Globus system was longer than the
process of local submission, resulting in the slower queue
size growth visible in figures 7 through 10. In addition, some
non-constant delays were observed between submission of
jobs to Globus and the time at which the jobs were delivered
to Condor. This delay, especially evident in the queue size
jitter shown in figure 8, was not particularly alarming, once
again due to the emphasis taken by both systems on high
throughput, as opposed to high performance.

Although net throughput was slightly reduced by the late
arrival of the last set of jobs, the addition of Globus as
a “buffer” reduced the extremity of the VOC contraction.
While the size of the VOC was reduced, necessitating the
rebooting of some nodes, the VOC was never completely
removed from operation as it was in the local test. This
buffering effect was not observed with extremely short
jobs, as depicted in figure 10, where the VOC was briefly
completely terminated.

6. Conclusions

Virtual Organization Clusters provide a mechanism by
which each Virtual Organization may have its own dedicated
computational clusters on grid sites. VOCs can be dynam-
ically instantiated, expanded, contracted, or terminated in
response to the size and number of jobs submitted by
users affiliated with each individual VO. With dynamic
scheduling of VOCs, it is possible to specify policies that
limit the number of concurrent virtual machine instances
running simultaneously for a single VOC, thereby effectively
constraining the maximum size of individual VOCs. Physical
grid sites can thus share limited hardware resources among
different VOs, while providing each VO its own dedicated
cluster execution environment.

Early performance tests of a prototype VOC scheduler
were encouraging. The VOC nodes were dynamically added
and removed from operation, without any intervention by
the system administrator or other grid middleware. While
the performance of the system was negatively impacted
by over-responsiveness of the watchdog in removing VOCs
from operation, it is likely that parameterized tuning of VM
start-stop behavior would be able to mitigate some of the
performance degradation. Future research will be conducted
to analyze optimal policies for starting and stopping VMs
in response to grid loads.



Figure 3. Two submissions of 50 jobs, 10-second execution time, submitted locally

Figure 4. Submitted 10 jobs every 90 seconds, 10-second execution time, submitted locally

Figure 5. Submitted 10 jobs every 30 seconds, 10-second execution time, submitted locally

Figure 6. Submitted 10 jobs every 30 seconds, 1-second execution time, submitted locally



Figure 7. Two submissions of 50 jobs, 10-second execution time, submitted through Globus

Figure 8. Submitted 10 jobs every 90 seconds, 10-second execution time, submitted through Globus

Figure 9. Submitted 10 jobs every 30 seconds, 10-second execution time, submitted through Globus

Figure 10. Submitted 10 jobs every 30 seconds, 1-second execution time, submitted through Globus
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