
Self-Provisioned Hybrid Clouds

Linton Abraham, Michael A. Murphy, Michael Fenn, and Sebastien Goasguen
School of Computing
Clemson University

Clemson, SC 29634-0974 USA
{labraha, mamurph, mfenn, sebgoa}@clemson.edu

Abstract

Virtual Organizations are dynamic entities that consist of
individuals and/or institutions established around a set of
resource-sharing rules and conditions. The VO may require
the use of on-site (local) and off-site (public) compute
resources that can be leased or autonomically provisioned,
based on workload and site policies. Virtual Organization
Clusters provide the necessary computing infrastructure by
building upon existing physical grid sites without disrupting
the existing infrastructure or requiring any engagement from
end users. VOCs also separate the physical and virtual
administrative domains and thus encourage more sites to
participate in the resource sharing and hosting. The VO can
relinquish the compute resources based on job completion
or other operational parameters such as cost. This paper
expands on previous work with the Virtual Organization
Cluster Model by demonstrating its scalability across mul-
tiple grid sites with the use of a structured peer-to-peer
overlay networking system. A novel approach by which
the model can extend to lease-based systems, such as the
Amazon Elastic Compute Cloud (EC2), is introduced.

1. Introduction

The availability of large-scale computing resources for
research is an absolute requirement for domain scientists
and users. For example, as telescopes grow bigger and
extend further into outer space, astronomers and physicists
are forced to confront the overwhelming vastness of the
universe. Consequently, data and research that simulate var-
ious facets of celestial bodies require enormous computing
power. Rising costs that are associated with the manpower,
energy and hardware required to accommodate these large
distributed applications, adversely affect deployment. Vir-
tual Organization Clusters (VOCs)[1] and Cloud Computing
enable researchers to minimize these costs. VOCs enable
Virtual Organizations to leverage the resources of multiple
participating grid sites, allowing greater utilization ofex-
isting hardware and increased resource availability for end
users. Figure 1 shows the primary design and architecture of

a VOC with a single participating grid site. This architecture
was explained in detail in [2].

Figure 1. A Single Grid Site VOC

Cloud Computing allows scientists and other users to run
their applications on leased systems without incurring the
direct costs of acquiring and maintaining hardware. Cloud
Architectures [3] address major issues that arise from large-
scale data processing. In traditional data processing environ-
ments, it is difficult not only to get as many machines as an
application requests but also to get a resource allocation in a
timely manner. It is also difficult to distribute and co-ordinate
a large-scale job on different machines and provision an ap-
propriate infrastructure to recover from failures. Traditional
architectures also are inefficient when adapting nodes to
dynamic workloads, especially when systems must be re-
imaged to change software stacks to support different users.
Applications built from Cloud Architectures are hosted in
the networks of systems, where the physical location of
the infrastructure is determined by the cloud provider. Most
Cloud providers offer simple APIs to Internet-accessible
services that scale on demand, hiding the complex reliabil-
ity and scalability logic behind services. Cloud computing
provides high utilization and cost optimization for hosted



applications.
The primary purpose of this paper is to establish a

foundation by which the VOC model can be extended to
leverage generic cloud resources. In the remainder of this
paper, related work is discussed in Section 2. The VOC
Model is described in Section 3. Section 4 discusses the
overlay network that links widely distributed resources into
a dedicated private cluster. A procedure for conducting
operational testing of a VOC and the design and architecture
of a prototype cloud system is discussed in Section 5.
Experimental results are presented in Section 6. Some initial
conclusions are presented Section 7.

2. Related Work

Virtualization was first introduced in the late 1960s. It
separates a virtual operating system known as the “guest”
system from the physical machine known as the “host”
system. The primary motivation behind virtualization has al-
ways been to decouple software applications from the under-
lying physical hardware implementation. [4] Virtualization
of grid systems was first proposed in [5] and provides much
required abstraction and usability to grid users and system
administrators. In a virtualized environment, access can be
granted as per the administrators needs. This reduces the
potential harm that can be done to the hardware. Hardware
multiplexing is also possible; the same hardware can be
used to host different kinds of Virtual Machines. [5] Higher-
level system components may also be virtualized; examples
include virtual networking systems such as ViNe [6], VNET
[7], VDE [8], and IPOP[9]. Virtualization at the application
layer has been realized in systems such as In-VIGO [10].

Shirako [11], is a lease-oriented model in which the re-
source allocation is explicitly handled by automated brokers.
Cluster-On-Demand (COD) [12] is an automated system
that performs rapid re-installation of physical machines
or Xen virtual machines [13] and provides the back-end
clustering needed by Shirako. The Grid Resource Over-
sight Coordinator (GROC) permits physical resources to be
leased by Virtual Organizations for the purpose of deploying
completely virtualized grids. The physical grid site host a
virtual cluster belonging to the same VO, but does not span
individual clusters across multiple grid sites. [14]

Globus Virtual Workspaces allocates a Virtual Workspace
given a description of the hardware and software require-
ments of an application. This allows the workspace to be
instantiated and deployed on a per-application basis. The
Workspace must then be explicitly deployed on a host
site and then access is derived to run computational jobs.
[15] By utilizing a leasing model, Virtual Workspaces can
provide high-level, fine-grained resource management to
deliver specific Quality of Service guarantees to different
applications using a combination of pre-arranged and best-
effort allocations [16]. By leasing multiple resources simul-

taneously, Virtual Workspaces can also be aggregated into
clusters [17].

Local clusters often need to be extended within the
same LAN. Autonomic virtualization overlay systems like
VioCluster have been developed for that sole purpose. The
concept of dividing each cluster into a physical and a
virtual domain was first introduced with the VioCluster.
Virtual domains are transparently and autonomically re-sized
by means of a broker application, which trades machine
allocations between groups by following explicitly config-
ured policies. This brokering process is transparent to end-
users, permitting the virtualized cluster to be used as if
it were a regular physical cluster. [18] By utilizing the
Violin overlay network, virtual domains on several different
physical clusters may be combined into a single execution
environment with a private network space [19]. Dynamic
Virtual Clustering allows clusters of virtual machines to be
instantiated on a per-job basis for the purpose of providing
temporary, uniform execution environments across clusters
co-located on a single research campus. These clusters
comprise a Campus Area Grid (CAG), which is defined
as “a group of clusters in a small geographic area . . .
connected by a private, high-speed network” [20]. Latency
and bandwidth properties of the private network are con-
sidered to be favorable, thereby allowing a combination of
spanned clusters to function as a single high-performance
cluster for job execution. However, the software configu-
rations of the different component clusters may differ, as
the component clusters may belong to different entities with
different management. DVC permits Xen virtual machines
with homogeneous software to be run on federated clusters
on the same CAG whenever the target cluster is not in use
by its owner, thereby allowing research groups to increase
the sizes of their clusters temporarily [20].

Virtual Organization Clusters (discussed in detail in Sec-
tion 3)[1] differ from explicit leasing systems such as Globus
Nimbus and Shirako, in that virtual clusters are leased auto-
nomically through the use of pilot jobs, which provide for
dynamic provisioning in response to increasing workloads
for the associated VO [2]. VOCs remain transparent to
end users and to non-participating entities, while enabling
participating VOs to use overlay networks, such as IPOP
[9], to create virtual environments that span multiple phys-
ical domains. Unlike Campus Area Grids and VioCluster
environments, however, these physical domains are grid sites
connected via low-bandwidth, high-latency networks. These
unfavorable connections, coupled with overheads introduced
by the addition of virtualization systems, make VOCs bet-
ter suited to high-throughput, compute-bound applications
than to high-performance applications with latency-sensitive
communications requirements [21].

OpenVPN (discussed in Section 4)is an open source vir-
tual private network (VPN) tool that facilitates the creation
of point-to-point or server-to-multi client encrypted tunnels



between host computers. It does satisfy three of the core
requirements of the VOC model, but requires users to handle
load balancing between multiple servers [22]. OpenVPN
cannot handle the autonomic addition or removal of servers
and clients without making significant modifications to the
routing tables of a few (or all) participating nodes in the
system.

IPOP or Internet Protocol over Peer-to-Peer [9], is a
tunneling software that uses a peer-to-peer architecture
rather than a client-server architecture. IPOP Brunet [23],
a software library for P2P networking written in C# and
developed using Mono. It’s key features include:

1) Network transports are abstracted as Edge objects.
Thus enabling TCP, UDP and TLS/SSL transports,

2) Completely distributed UDP NAT traversal,
3) Implementation of Chord/Kleinberg/Symphony [24]

type ring topology for routing,
4) A complete DHT implementation and
5) Distributed tunneling system to maintain topology

in the presence of some routing difficulties (un-
traversable NATs, BGP outages, firewalls, etc.).

IPOP [9] is a self-configuring IP-over-P2P virtual network
overlay which provides the capability for nodes behind
NATs and some firewalls to all appear to be in the same
subnet. Besides being transparent to applications, IPOP was
deployed in the VOC [1] model for the reasons explained
in Section 4.

3. Virtual-Organization Clusters

Virtual Organization Clusters (VOCs), described more
thoroughly in [1], enable the creation of virtual cluster
environments that are compatible across sites, deploy-able
without per-node replication, transparent to end users, im-
plementable in a phased and non-disruptive manner, option-
ally customizable by Virtual Organizations, and designed
according to a specification that permits formal analysis.
Since VOCs are constructed from virtual machines (VMs),
and multiple VM instances can be spawned from a single
image, VOC environments are nominally homogeneous (and
therefore software compatible) across grid sites. If each grid
site utilizes a central distributed file system store such as
PVFS [25], VOC nodes can be booted directly from the
shared file system, without staging the multi-gigabyte image
files to the physical compute nodes. Once operational, VOCs
remain completely transparent to the end user, since the
virtual environments are autonomically managed without
explicit resource reservation requests. VOCs also remain
transparent to Virtual Organizations and other entities that
choose not to deploy them, allowing VOC implementations
to be added to existing production grids without disrupting
the operational infrastructure. Different technologies can be
utilized to implement VOCs, since a VOC is simply an im-

plementation of a system that conforms to the specifications
presented in the VOC Model.

A key specification of the VOC Model is the explicit
separation of administrative domains. Each physical site on
the grid is a unique Physical Administrative Domain (PAD),
which is managed by local administrators. Components of
each PAD include the physical computing resources, net-
working interconnections, and all associated infrastructure,
including power distribution and cooling. Each hosted VOC
is a separate Virtual Administrative Domain (VAD) that
is managed by the owning VO or an agent thereof. This
explicit administrative access permits each VAD to have a
customized software environment. Moreover, the separation
of administrative domains implies a separation of policy au-
thority. Local site owners and VOC owners may implement
their own resource allocation, scheduling, and management
policies. These policy decisions are all independent: no
coordination is required between the VOC administrators
and the site administrators. VOCs are explicitly a “best-
effort” system and will execute on any physical site willing
to provide VM hosting services.

Jobs can be submitted directly to a VOC through a
dedicated, grid-facing head node. This cluster head node
contains the necessary grid interconnection software (for
example, Globus [26]) and appears as a compute element
on the grid. As the size of the job queue on the private head
node increases, pilot jobs are submitted to grid sites to obtain
physical resources. In turn, these pilot jobs start virtual
machines, which are dynamically configured, or “contex-
tualized” [27], at boot time to start the overlay network
and join the scheduler pool on the private head node. User
jobs are then executed on the virtual cluster as provided by
the scheduling policies implemented in the VOC. Figure 2
shows the design of a VOC that spans multiple grid sites.
Implementation of this design is detailed in Section 6.

4. Peer-to-Peer Overlay Networks

The VOC model does not require the use of any specific
networking model. A potential client-server architectureand
peer-to-peer architecture are discussed in this section.

Virtual networking systems that enable VOCs to span
multiple resources must be able to:

1) Support an ad-hoc network, i. e. support the dynamic
addition and removal of nodes based on workload,

2) Load balance between multiple servers efficiently and
without user involvement,

3) Assign IP addresses dynamically,
4) Route traffic efficiently between machines in the pool,
5) Have the capability to traverse NAT and firewalls.



Figure 2. A VOC across multiple grid sites

4.1. Client-Server Architectures

Client-server architectures rely heavily on centralized
servers for connectivity and routing. In many VPN sys-
tems such as OpenVPN [22], the server is used not only
to assign addresses to the clients but also function as a
STUN (Simple Traversal of User Datagram Protocol [UDP]
Through Network Address Translators [NATs]) server. This
often leads to a bottleneck in the server. While OpenVPN
supports load balancing among multiple servers, users have
to set up routing tables to manage the clients. Such systems
also require heavy modifications as servers enter or leave the
system. Therefore, scalability of client-server based systems
has always been a major cause of concern.

4.2. Peer-to-Peer Architecture

Peer-to-Peer systems have an architecture where all the
participating nodes act as peers. There is no centralized
server and hence no single point of failure in a such system.
Peer-to-peer systems often implement an application layer
overlay network on top of the native or physical network
topology. Such overlays are used for indexing and peer
discovery. Content is typically exchanged directly over the
underlying Internet Protocol (IP) network. Anonymous peer-
to-peer systems are an exception, and implement extra
routing layers to obscure the identity of the source or
destination of queries. Peer-to-peer networks are typically
formed dynamically by ad-hoc additions of nodes. In an ’ad-
hoc’ network, the removal of nodes has no significant impact

on the network. The distributed architecture of an application
in a peer-to-peer system provides enhanced scalability and
service robustness. [28]

As mentioned in Section 2, IPOP or IP-over-P2P can be
used for the networking in the VOC Model. Details the
IPOP implementation used can be found in Section 6. IPOP
is a structured P2P based system. Structured P2P systems
employ specific algorithms that help to establish connections
within the overlay through the use of Distributed Hash
Tables (DHTs) to store node-specific information. DHTs
are a class of decentralized distributed systems that provide
a lookup service similar to a hash table. Key-value pairs
are stored in the DHT, and any participating node can
efficiently retrieve the value associated with a given key.
Responsibility for maintaining the mapping from keys to
values is distributed among the nodes, in such a way that a
change in the set of participants causes a minimal amount
of disruption. This allows DHTs to scale to extremely large
numbers of nodes and to handle continual node arrivals,
departures, and failures [29].

Unstructured P2Ps have no algorithm for organization
or optimization of network connections. Such systems are
similar to client-server systems in the fact that a central
server is often used for index functions and to bootstrap the
entire system. Napster [30]is an example of an unstructured
P2P system.



5. Test Procedure

Two types of tests are performed: the first is a long-term
test of a transparent VOC, and the second is a test of a VOC
that spans multiple grid sites via an overlay network. These
tests could not be run concurrently as the implementation of
an overlay network would disrupt the operational testing.

5.1. Operational Testing

This section discusses a set of operational tests conducted
on a cluster of 16 nodes. In these experiments, Virtual Or-
ganization Clusters were transparently provided to specific
Virtual Organizations on the Open Science Grid, and jobs
from those VOs were executed in 32-bit CentOS virtual
machines. On June 1, 2009, a short operational test was
started, in which a single VOC was placed into service
on behalf of the Engage VO, using the delayed response
watchdog provisioning algorithm with a minimum of two
VMs and a maximum of sixteen VMs. After approximately
44 hours of testing, the VOC was removed from service on
June 3, 2009.

Following the short operational test, a long operational
deployment – approximately two months in length – was
effected using the same watchdog algorithm. Two VOCs
were attached to the Open Science Grid, with one VOC
dedicated to the Engage VO and the other VOC dedicated
to the NanoHub VO. Both VOCs were set to a minimum
size of two VMs and a maximum size of sixteen VM,
which resulted in utilization of all 32 physical CPU cores
whenever both VOCs were at maximum size. The long-
running operational experiment commenced on June 4, 2009
and completed on August 17, 2009.

5.2. Overlay Network Testing

This section discusses a prototype implementation of a
system for dynamically provisioning nodes across multiple
grid sites. As illustrated in Figure 2, the user submits jobs
to the VO’s Grid Compute Element (CE). The user does not
need to be concerned about how the resources he requires are
obtained and allocated. The dynamic provisioning (resizing
of the VOC) is performed by a watchdog that is set up
on the VOC head node. In the current implementation, the
watchdog uses a simple greedy algorithm. The watchdog
monitors incoming jobs on the gatekeeper. When a job enters
the local queue, the watchdog determines whether or not it
should start a Virtual Machine (VM) on one of the physical
hosts. If started, the virtual machine then joins the IPOP
pool. The watchdog continues to monitor the job queue and
starts VMs depending on the workload. The local scheduler
(e.g. Condor [31], PBS [32], LSF [33]) schedules the jobs
on the virtual machines. Once jobs are executed and there
are more VMs than jobs, the watchdog terminates idle VMs.

Figure 2 also shows that each VO has one watchdog. Once
all the local compute resources are exhausted, the watchdog
contacts the gatekeeper on another participating grid site. It
then starts up VMs on that site and those machines join the
VOs pool as well.

Experiments were conducted with a lease based system
called the Amazon Elastic Compute Cloud (EC2) [34].
The local (on-site) compute resource consisted of 16 VMs
dedicated to the Engage VO [35], which consisted of 16
dual core machines with each core dedicated to a VO. The
implemented watchdog is able to handle both machines
in the local cluster and on Amazon EC2. The local clus-
ter specifications and the original implementation of the
watchdog are explained in detail in [2]. The watchdog for
this experiment was designed to handle the complexities
of multiple grid sites, the local cluster and a set of EC2
instances in this case.

The basic watchdog algorithm is:

1) Invoke PROBE_STATE, a module to determine the
number of jobs in the schedule’s queue,

2) Examine the jobs to VMs ratio and enter a the appro-
priate state, described below,

3) Take an action based on the current state,
4) Wait for a given interval (10 seconds in the prototype).

While the VOC Model supports any batch scheduler, the
prototype implementation uses the Condor job manager [31].
The PROBE_STATE module is used to determine the state
of the Condor queue when invoked. One of four possible is
then entered:

1) Number of Jobs in the queue is GREATER than the
number of VMs reporting AND limit on number of
local VMs HAS NOT been reached.

2) Number of Jobs in the queue is GREATER than the
number of VMs reporting AND limit on number of
local VMs HAS been reached.

3) Number of Jobs in the queue is LESSER than the
number of VMs reporting AND MORE VMs than the
local cluster’s limit are reporting.

4) Number of Jobs in the queue is LESSER than the
number of VMs reporting AND LESSER VMs than
the local cluster’s limit are reporting.

Separate modules handle each state. State 1 invokes a
START_LOCAL module that only starts machines on the
local cluster. The module communicates with the gatekeeper
using Globus. The gatekeeper contacts the head node to start
up local VMs.

State 2 invokes a START_EC2 module used to start
EC2 instances, once local resources have been exhausted.
The module uses the standard EC2 API command ec2-run-
instances to boot an instance. Both the local and EC2 nodes
are configured to join the IPOP pool and are part of a
single VO. Each Amazon instance is pre-configured with the
software packages that are required by the VO. The nodes



Figure 3. Short operational test (44 hours) with the physical cluster configured to support a 16-node Virtual
Organization Cluster dedicated to the Engage Virtual Organization.

Figure 4. Long operational test: Engage VO. A second operational VOC, dedicated to the NanoHub VO, was sharing
the same hardware.

are also configured to join the IPOP overlay once booted.
Since Amazon bills a partial hour of usage as a full hour, a
limit of a 100 instances is imposed in order to control costs.
Thus an EC2_instance_counter is maintained to ensure that
the limit isn’t exceeded.

State 3 invokes a STOP_EC2 module when the number
of jobs is less than the number of VMs, terminate priority
is given to the EC2 instances. The STOP_EC2 module
invokes another module called CHECK_IDLE. This module
ensures that only the IP addresses of idle VMs are returned,
guaranteeing that VMs that are scheduled and claimed
will not be terminated. The system design ensures that all
EC2 instances are terminated before the termination of the

local VMs, ensuring that local reasources are more heavily
utilized than resources provided by off-site grid locations.
Once all the instances are terminated, the watchdog shuts
down VMs in the local cluster after ensuring that the number
of jobs is less than the number of VMs

State 4 invokes a STOP_LOCAL module that shuts
down local VMs. As in the STOP_EC2 module, the
CHECK_IDLE module returns idle VMs. Using this list,
the STOP_LOCAL module terminates VMs. In both the
STOP_LOCAL and STOP_EC2 modules, the systems are
terminated by sending the ’poweroff’ signal over secure
shell.



Figure 5. Operational test: NanoHub VO. A second operational VOC, dedicated to the Engage VO, was sharing the
same hardware.

6. Results

6.1. Operational Results

As visualized in Figure 3, several bursts of jobs arrived
during the short test period, and these bursts were accommo-
dated by increasing the size of the VOC to the maximum
specified level (16 nodes). All virtual nodes were hosted
directly by the prototype system in order to contain costs,
and no leased EC2 instances were employed.

As illustrated in Figure 4, jobs associated with the Engage
VO continued to arrive in bursts for the first two thirds
of the long test period, resulting in temporary increases
in VOC size. Bursts of jobs associated with the NanoHub
VO (Figure 5) were less frequent, significantly smaller in
size, and limited to the first third of the long test period.
Subsequent analysis determined that most NanoHub jobs,
and an increasingly larger number of Engage jobs, required
64-bit operating environments. Since the prototype VOCs
provided 32-bit environments, fewer jobs were sent to the
prototype system as August approached.

After completion of the operational tests, the prototype
system became obsolete for research purposes. The Intel
Xeon processors installed in the physical compute nodes
were equipped with the first generation of virtualization
extensions, which did not include extended page tables or
virtualized Input/Output devices. Rather than immediately
discarding the hardware, a single Virtual Organization Clus-
ter was deployed for the STAR VO [36], using a custom
virtual machine image provided by the VO administrators. In
this deployment, the VOC was still provided transparently on
OSG by the system, although the VO provided the software
stack in a sort of “semi-transparent” arrangement. Thus, the

prototype implementation was converted into a production
system, and it was still in service as of October 2009.

6.2. Overlay Network Results

Figure 6 shows the short jobs that were run. Five hundred,
10 second sleep jobs submitted in one batch. As seen in the
figure, since the jobs are short and embarrassingly parallel,
the EC2 instances and local VMs are still running for a
period of time after all the jobs are complete. In Figure
7, three hundred 10 second sleep jobs were submitted in
one batch. As these were longer jobs, the instances were
terminated before the all the jobs were completed because
of the use of the local VMs. Therefore, the system is better
suited to longer jobs due to the cost factor inherent in using
the leased resources. The use of compute resources located at
multiple grid sites ensures that adequate compute resources
are always available to the VO and hence the end user. The
overlay network allows nodes in any geographic location to
be a part of the VO. To the user, it all appears as a large
number of machines in the same pool.

7. Conclusions

By dynamically provisioning compute resources, VOCs
provide high utilization and resource availability as shown in
the results. The use of multiple grid sites and the subsequent
availability of resources is achieved without any involvement
from the end user. The inclusion of the IPOP overlay
network and the pilot jobs (used by the watchdog to send
requests to multiple grid sites) enables Virtual Organizations
to allocate resources and schedule jobs privately. With the
use of more IPOP bootstrap nodes, the system is highly



Figure 6. Short Jobs - 500 x 10 second jobs

Figure 7. Long Jobs - 300 x 10 minute jobs

scalable and capable of spanning multiple grid sites and
enables cross-domain management of the virtual computing
nodes. The overhead introduced by IPOP [9] [2] is within
acceptable limits for compute-bound tasks.

It has also been shown that the VOC model can be
extended efficiently to leasing models such as Amazon EC2
[34], Shirako [37] and DVC [38]. The current watchdog uses
a greedy implementation and might increase the cost of the
system. Work is being done to implement an autonomous
watchdog that monitors the states of the machines and

provisions based on the running time and other requirements
of jobs coming in. VOCs require no particular networking or
operational environment to provide end users with a highly
stable computing infrastructure. The experiments and results
discussed in this paper illustrate one of several ways this
model can adapt to requirements; showcasing the versatility
of the VOC Model



References

[1] M. A. Murphy, M. Fenn, and S. Goasguen, “Virtual Organiza-
tion Clusters,” in17th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP
2009), Weimar, Germany, February 2009.

[2] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen, “Dy-
namic provisioning of Virtual Organization Clusters,” in9th
IEEE International Symposium on Cluster Computing and the
Grid (CCGrid ’09), Shanghai, China, May 2009.

[3] A. Weiss, “Computing in the clouds,”netWorker, vol. 11,
no. 4, pp. 16–25, 2007.

[4] R. Figueiredo, P. A. Dinda, and J. Fortes, “Resource virtu-
alization renaissance,”Computer, vol. 38, no. 5, pp. 28–31,
May 2005.

[5] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A case
for grid computing on virtual machines,” in23rd International
Conference on Distributed Computing Systems, 2003.

[6] M. Tsugawa and J. A. B. Fortes, “A virtual network (ViNe)
architecture for grid computing,” in20th International Par-
allel and Distributed Processing Symposium (IPDPS 2006),
2006.

[7] A. I. Sundararaj and P. A. Dinda, “Towards virtual networks
for virtual machine grid computing,” inThird Virtual Machine
Research and Technology Symposium, San Jose, CA, May
2004.

[8] R. Davoli, “VDE: Virtual Distributed Ethernet,” inFirst
International Conference on Testbeds and Research Infras-
tructures for the Development of Networks and Communities
(Tridentcom 2005), Trento, Italy, February 2005.

[9] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo,
“IP over P2P: Enabling self-configuring virtual IP networks
for grid computing,” in20th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2006), 2006.

[10] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,
I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao,
L. Zhu, and X. Zhu, “From virtualized resources to virtual
computing grids: the In-VIGO system,”Future Generation
Computer Systems, vol. 21, no. 6, pp. 896–909, June 2005.

[11] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and
K. Yocum, “Sharing network resources with brokered leases,”
in USENIX Technical Conference, Boston, MA, June 2006.

[12] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E.
Sprenkle, “Dynamic virtual clusters in a grid site manager,”
in HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing,
June 2003.

[13] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual
machine hosting for networked clusters: Building the foun-
dations for ‘autonomic’ orchestration,” inFirst International
Workshop on Virtualization Technology in Distributed Com-
puting (VTDC ’06), Tampa, FL, November 2006.

[14] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin,
A. Yumerefendi, and J. Chase, “Toward a doctrine of con-
tainment: Grid hosting with adaptive resource control,” in
19th Annual Supercomputing Conference (SC ’06), Tampa,
FL, November 2006.

[15] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron,
“Virtual workspaces in the Grid,” in11th International Euro-
Par Conference, Lisbon, Portugal, September 2005.

[16] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch
execution and leasing using virtual machines,” in17th In-
ternational Symposium on High Performance Distributed
Computing (HPDC 2008), 2008.

[17] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor,
and X. Zhang, “Virtual clusters for grid communities,” in6th
IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2006), Singapore, May 2006.

[18] P. Ruth, P. McGachey, and D. Xu, “VioCluster: Virtualization
for dynamic computational domains,” inIEEE International
Conference on Cluster Computing, Boston, MA, September
2005.

[19] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, “Virtual dis-
tributed environments in a shared infrastructure,”Computer,
vol. 38, no. 5, pp. 63–69, 2005.

[20] W. Emeneker and D. Stanzione, “Dynamic virtual clustering,”
in 2007 IEEE International Conference on Cluster Comput-
ing, 2007.

[21] M. Fenn, M. A. Murphy, and S. Goasguen, “A study of
a KVM-based cluster for grid computing,” in47th ACM
Southeast Conference (ACMSE ’09), Clemson, SC, March
2009.

[22] J. Liu, Y. Li, N. V. Vorst, S. Mann, and K. Hellman, “A real-
time network simulation infrastructure based on OpenVPN,”
J. Syst. Softw., vol. 82, no. 3, pp. 473–485, 2009.

[23] P. O. Boykin, J. S. A. Bridgewater, J. S. Kong, K. M. Lozev,
B. A. Rezaei, and V. P. Roychowdhury. (2007, September) A
symphony conducted by Brunet. Online. [Online]. Available:
http://arxiv.org/abs/0709.4048

[24] G. Manku, M. Bawa, and P. Raghavan, “Symphony:
Distributed hashing in a small world,” in Proc.
4th USENIX Symposium on Internet Technologies
and Systems (USITS 2003), 2003. [Online]. Available:
http://citeseer.ist.psu.edu/manku03symphony.html

[25] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, “PVFS:
A parallel file system for Linux clusters,” inALS’00: Pro-
ceedings of the 4th annual Linux Showcase and Conference,
2000.

[26] I. Foster and C. Kesselman, “Globus: A metacomputing in-
frastructure toolkit,”International Journal of Supercomputing
Applications, vol. 11, no. 2, pp. 115–128, 1997.

[27] K. Keahey and T. Freeman, “Contextualization: Providing
one-click virtual clusters,” in4th IEEE International Con-
ference on e-Science, Indianapolis, IN, December 2008.



[28] R. Schollmeier and G. Schollmeier, “Why peer-to-peer (P2P)
does scale: an analysis of P2P traffic patterns,” inSecond
International Conference on Peer-to-Peer Computing Pro-
ceedings (P2P 2002), September 2002, pp. 112–119.

[29] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica, “Looking up data in P2P systems,”Communications
of the ACM, vol. 46, no. 2, pp. 43–48, February 2003.

[30] A. Oram,Peer-to-Peer : Harnessing the Power of Disruptive
Technologies, A. Oram, Ed. O’Reilly, March 2001.

[31] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor
– a distributed job scheduler,” inBeowulf Cluster Computing
with Linux, T. Sterling, Ed. MIT Press, October 2001.

[32] B. Nitzberg, J. M. Schopf, and J. P. Jones,PBS Pro: Grid
computing and scheduling attributes. Norwell, MA, USA:
Kluwer Academic Publishers, 2004, ch. 13, pp. 183–190.

[33] I. Lumb and C. Smith,Scheduling attributes and platform
LSF. Norwell, MA, USA: Kluwer Academic Publishers,
2004, ch. 12, pp. 171–182.

[34] Amazon Web Services, “Amazon elastic compute cloud (ama-
zon EC2).” [Online]. Available: http://aws.amazon.com/ec2/

[35] Engage VO. [Online]. Available:
https://twiki.grid.iu.edu/bin/view/Engagement/WebHome

[36] The STAR Experiment. [Online]. Available:
http://drupal.star.bnl.gov/STAR/

[37] Duke Systems, “Shirako home page.” [Online]. Available:
http://nicl.cod.cs.duke.edu/cereus/shirako.html

[38] W. Emeneker, “Dynamic virtual clustering,” Master’s thesis,
Arizona State University, April 2007.


