Numbers and Arithmetic

Extension Assignment Rubric

Check Items

Description	Points	Comments	Grade
Differences between decimal,	5		
binary, octal, and hexadecimal are			
explained.			
Conversion from hexadecimal to	10		
decimal is demonstrated, showing			
all work.			
Conversion from binary to decimal	10		
is demonstrated, showing all work.			
First subtraction example is	5		
demonstrated correctly using			
nine's complement arithmetic.			
Second subtraction example is	5		
demonstrated correctly using			
nine's complement arithmetic.			
Third subtraction example is	5		
demonstrated correctly using			
nine's complement arithmetic.			
Fourth subtraction example is	5		
demonstrated correctly using			
nine's complement arithmetic.			
Left shifts are explained correctly.	5		
Logical right shifts are explained	5		
correctly.			
Arithmetic right shifts are	10		
explained correctly.			
IEEE 754 precision levels are	5		
correctly identified.			
The number of representations for	5		
zero in IEEE 754 is explained			
correctly.			
The parts of an IEEE 754 floating	5		
point number are correctly			
identified.			
IEEE 754 subnormal numbers are	5		
explained correctly.			
Hard float and soft float	5		
architectures are explained			
correctly.			

An example of a hard float CPU is given.	5		
An example of a soft float CPU is given.	5		
MAXIMUM GRADE:	100	Hypothetical Grade:	

Grade

Calculation Algorithm	Your Grade
If Hypothetical Grade ≥ 70 then enter Hypothetical Grade	x
Else enter 0	

A grade of 85 or higher is required to be able to continue onto the Challenge Assignment. As a result, you MAY [NOT] submit a Challenge Assignment in this course.

Remarks

•