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Who Should Read This? You should read (study) the following essay if you are unfamiliar with any
of the following terms.

independent variable (explanatory or predictor or grouping variable)
dependent variable (response or criterion variable)
factor

levels of a factor

ANOVA (analysis of variance)
experimental design

true or randomized or designed experiment
quasi-experimental design

self-selected subjects

intact groups

observational studies

confounding variables

between subjects variables (designs)
between groups designs (same as between subjects)
within subjects variables (designs)
repeated measures designs

treatment by subjects designs

matched groups (designs)

simple designs

single factor designs

completely randomized designs

balanced designs (vs. unbalanced designs)
factorial designs

mixed factorial designs

main effects

simple effects

interaction effects

correlation

correlational designs

regression analysis

multiple regression

analysis of covariance

covariate

Part 1: Experimental Designs and ANOVA

Factors. All experiments involve trying to discover the effect of an independent variable on a
dependent variable. The independent variable (IV) is the thing the investigator is manipulating,
while the dependent variable (DV) is the thing the investigator is recording about his subjects. When



you read the description of an experiment, you will usually find that the investigator has divided his
subjects into two or more groups. These groups are then treated differently in some fashion by the
experimenter. You should ask yourself, "How are the different groups of subjects in this experiment
treated differently?” When you answer that question, you will know the 1V. The groups may be
given different doses of a drug, for example. In this case, the IV would be drug dose.

In some cases, the investigator will not actually be manipulating the 1V. The subjects will come into
the "experiment"” already selected for groups. This might occur, for example, if the investigator is
looking for gender differences. Clearly in such a case, the male subjects will be considered one
group in the study, and the female subjects will be considered another. Although the two groups are
not "treated" differently by the investigator, they are still differentiated by gender. In this study,
gender would be the "IV." Technically, such a study should not be considered a true experiment,
which requires that subjects be randomly assigned to the treatment groups. ("True experiments" are
also called randomized experiments for that reason.) When subjects are self-selected, the study is
often referred to as a quasi-experiment, which literally means "something like an experiment but not
quite exactly like an experiment.” These studies are also often called observational studies, because
we really haven't done anything experimental. We've merely observed which group our subjects are
already in, and then we're recorded (observed) a value of the DV for each subject.

It rarely makes a difference to the statistical analysis, however, as long as certain conditions are met.
Although quasi-experiments do not have true IVs--they have quasi-1Vs--1 will continue to refer to
the "IV" in these cases. It might also be called the explanatory variable or the predictor variable.
You should also not get too bent out of shape concerning the term self-selected subjects. True,
people rarely get to choose their gender. What's important here is that the investigator does not get
to determine which subjects go into which group. Such subjects are referred to as self-selected. The
groups are called intact groups.

In the lingo of analysis of variance (ANOVA), independent variables are referred to as factors. That
is to say, they are categorical variables that determine the grouping of the subjects, or which
treatment condition the subjects are in. There may be more than one 1V, or factor, in any given
experiment or study, a complication we shall return to shortly.

A common mistake in talking about Vs is to name each value of the IV as an 1V of its own. In the
drug study;, if subjects in one group are given 200 mg of caffeine, subjects in a second group are
given 100 mg of caffeine, and subjects in a third group are given a placebo (0 mg of caffeine), it is a
mistake to say that the Vs are 0 mg, 100 mg, and 200 mg of caffeine. Similarly, in a study
investigating gender differences, it is a mistake to say that the 1Vs are men and women. In the first
example, the 1V is drug dose. In the second, it is gender. (I've even seen this mistake made in
textbooks by people who should know better. It's a sure sign that the author doesn't know his knees
from his elbows when it comes to experimental design!)

The individual values of an IV, or factor, are called levels. Thus, in the drug experiment, there is one
IV (dose of caffeine), and it has three levels (0 mg, 200 mg, 200 mg). In the study on gender
differences, there is one IV (gender), and it has the usual two levels (male, female), unless they've
come up with a third since the last time | looked.

In the behavioral sciences, independent variables are often, if not usually, categorical variables, as in
the case of the gender variable above. However, this is not always true. In the drug experiment,



illustrated above, the 1V could also be considered numerical. We will discuss numerical 1Vs below,
under correlational designs.

Confounding Variables. You should look very hard to find all the ways in which the treatment
groups are differentiated from one another. Sometimes you'll find differences that were not at all
obvious at first reading. Once you've made a list of these differences, you should ask yourself
whether the investigator has established these differences intentionally because he or she wants to
see if they change the values of the DV. In the studies above, the investigator is asking specific
questions: Does drug dose matter? Does gender matter? Will changing the values of these variables
change values of the DV? Once you've identified the questions being asked by the investigator,
you've identified the IVs.

Sometimes, however, you'll come across differences between the treatment groups that the
investigator seems to have overlooked. Or if he hasn't overlooked them, he is not interested in
looking to see how they change values of the DV. These differences are called confounding
variables or confounds. (To be entirely correct, they are only confounds if they actually are
associated with changes in the values of the DV. Otherwise, they are merely potential confounds.)
When confounds exist, then you do not know why the DV is changing. It could be the IV producing
the change, which is what the investigator wants to see, but it could also be the confound.
Statistically, it's often impossible to tell. Changes produced by a confound look just like changes
produced by the IV to the statistical analysis. Sometimes confounds can be controlled for
statistically, but this has to be planned in advance. When it's not, you've got a major problem
interpreting the results of the study. Confounds are especially likely to occur when subjects are
self-selected. The most important way of controlling for confounds is to randomly assign subjects to
treatment groups. When this can't be done, or when it hasn't been done, watch out for confounds.
You'll surely find them!

Between vs. Within Subjects Variables. Once you've identified how the different treatment groups
in the study are being treated differently (or at least how they are different from one another in the
case of self-selected subjects), the next question you should ask yourself is this. "Are the different
treatment groups made up of different people (or animals or whatever the subjects are)?" If the
answer to that question is "yes,"” then ask, "Are the subjects in the different groups in any way
paired up or matched with each other?" If the answer to that question is "no," then you have a
between-subjects variable, sometimes also called a between-groups variable. If the answer to the
first question is "no," or if the answer to the first question is "yes" and the answer to the second
question is "yes," then you have a within-subjects variable. The point is this:

e In an experiment with a between-subjects IV, the subjects in one group are being compared to
different and entirely independent subjects in other groups.

e In an experiment with a within-subjects 1V, the subjects in one group are being compared to
themselves, or if not to themselves then to subjects like themselves with whom they have been
matched or paired up.

Before you can begin a statistical analysis using ANOVA, you must know: (1) the identity of your
IVs or factors, (2) which factors are being tested between-subjects and which are being tested
within-subjects, and (3) what the DV is. Until you're sure you've identified these three things
correctly, don't even think about reaching for your calculator or computer!



Differentiating Between Subjects Variables
from Within Subjects Variables

Are subjects in difference treatment groups
the same pecple or different people?

Same Different

Within Subjects Are subjects in different treatment groups
matched or paired up in any way?
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Simple Designs. Some experiments (and some quasi-experiments) incorporate only one IV or factor.
The design of such an experiment is called a simple design, or sometimes a single-factor design.
Suppose we wish to investigate the effect of caffeine on motor performance. We might proceed as
follows. First, we would need to decide what aspect of motor performance we want to measure.
That is, we need to decide what the DV is going to be. There are several things we could measure,
but for the sake of illustration let's keep it as simple as possible. We'll measure the rate at which a
subject can tap his fingertip on a button placed before him on a table. (We could also use a key on a
computer keyboard, if we wanted to risk doing harm to the keyboard.) Second, we need to decide
what doses of caffeine we are going to give (the levels of the 1V). Let's go with placebo (hone or 0
mg), a moderate dose (100 mg), and a high dose (200 mg). Furthermore, we decide to test 10
subjects at each dose. The basic procedure will be to have a subject come into the lab, take
whichever dose of caffeine we have decided to test at this time, wait 20 minutes or so until the drug
has had time to take effect, and then let the subject tap away for a minute at our keypad, which we
have connected to an electronic counting device. (There is an important control we haven't
mentioned here. Do you see it?) So far our design looks like this.

| 1IV1 = dose of caffeine
| 0mg | 100 mg | 200 mg
'n=10 | n=10 | n=10




We have one more important decision to make. Is the 1V going to be tested between subjects or
within subjects? The reasons for choosing one of these techniques over the other is a matter for your
research methods course. Here | will simply describe the difference. Suppose we decide to use
different people in the three groups. We have a subject pool of thirty people, and we randomly
assign ten of them to each of the dosage-level groups. This would be called a between-subjects
design. In this case, since we randomly assigned subjects to groups, it would also be called a
completely randomized design. So we could thoroughly describe this experimental design by calling
it a single-factor (or simple), between subjects, completely randomized design.

Alternatively, we could decide to use the same ten subjects over again in all three conditions of the
experiment. Each subject would get, in turn, 0 mg, 100 mg, and 200 mg of caffeine, although not
necessarily in that order, and hopefully separated by a few days to allow the previous treatment to
wear off before the next one is begun. Here we would not be comparing the placebo group to the
100 mg group to the 200 mg group; we would be comparing Fred on placebo to Fred on 100 mg to
Fred on 200 mg. This would be called a single-factor within subjects design. It could also be called
a repeated measures design, which is roughly (although not quite exactly) the same thing as within
subjects. And, in case you think we have gotten carried away with multiple names for things, I'll give
you a third one. It is often also called a treatment by subjects design.

It's easy to slip into a within-subjects design without realizing it. Suppose we opt for the between-
subjects design, but then we start to worry. Drug effects are influenced by body weight. Shouldn't we
control for that? We notice that our subject pool contains Joe, Jeff, and John, all of whom have
about the same body weight. So we decide to put Joe in one group, Jeff in another group, and John
in the remaining group. We also match up other subjects by body weight and assort them to groups
in a similar fashion. We now have a matched groups design. We are comparing Joe to Jeff to John.
This is no longer between subjects but is now considered within subjects. (It is not repeated
measures, however, because we are not measuring the same subjects repeatedly. It amounts to the
same thing statistically though.) If you use the same subjects over again, or if you pair up or match
your subjects in any way across the groups, your design is within subjects or repeated measures.

Balanced Designs. All of the examples we've discussed so far would be called balanced designs.
That just means that all the treatment groups have the same number of subjects in them. Repeated
measures designs have no choice but to be balanced, unless we forget to measure one of the subjects
in one of the conditions, but between-subjects designs do not have to be balanced. We could easily
put 11 subjects in one group, 10 in another, and 9 in the third, in which case we'd have an
unbalanced design. In a randomized experiment, that would be a silly thing to do. (There are
extenuating circumstances, but they are uncommon.) We pay a price for unbalanced designs in
terms of our ability to detect the effect of the IV. If the design is factorial (next), then we also pay a
price in the difficulty of the analysis. "Keep your designs balanced™ is a good rule to follow. In the
case of quasi-experimental designs, however, that is often not possible and may even be unwise if it
jeopardizes random sampling.

Factorial Designs. It might well be the case that caffeine affects women differently from the way it
affects men. To test for this, we decide to do our drug experiment on separate groups of men and
women. Now, instead of having just one group of subjects getting each dose of drug, we have two
groups, one group of men and one of women. Instead of having just three groups in our experiment,



we now have six groups. These groups are differentiated from one another on two separate
dimensions: drug dose and gender. We have a group of men getting placebo treatment and a group of
women getting placebo treatment. We have a group of men getting 100 mg and a group of women
getting 100 mg. Finally, we have a group of men getting 200 mg and a group of women getting 200
mg. We might diagram this as follows. (Notice that design remains balanced.)

1VV1 = dose of caffeine

|
| Omg | 100 mg | 200 mg
Iszgender‘ men | n=5 | n=5 | n=5
women| n=5 | n=5 | n=5

We now have two 1Vs, and they are crossed with one another in such a way that we are testing them
both simultaneously, all levels of the first variable at all levels of the second variable. This is called a
factorial design. The gender variable will naturally be tested between subjects. If we decide to do
the same with the drug dose variable, then we have a factorial design with two between-subjects
factors. Should we decide to test the drug dose 1V within subjects, then we will have a special kind
of factorial design called a mixed factorial design. The word mixed refers to the fact that we have
some variables tested between subjects and some tested within subjects. In this case, we would say it
is a two-factor mixed factorial design with repeated measures on one factor. (This is actually a little
redundant, but it is better to be redundant than to leave something out.)

In either case, it would be called a 3x2 factorial design (read "three by two™), because we have three
levels of the first variable crossed with two levels of the second variable. Such a design gives us
3x2=6 treatment conditions in the experiment.

The effect of caffeine might also change with repeated dosing, due to tolerance for example. To test
for this effect, we might redesign the experiment as follows. First, we will omit the gender variable,
and in its place we will put a days-of-treatment variable. Second, we have to decide how many
levels this variable should have--let's say five. Of necessity, this is going to be a within-subjects
variable. If we make dose-of-caffeine a between-subjects variable, then we will once again have a
two-factor mixed factorial design with repeated measures on one factor. It's hard to imagine how
we could test both of these variables within subjects, but suppose we find a way. In that event, we
would have a two-factor factorial design with two within-subjects factors, or repeated measures on
both factors. In either event, we have a 3x5 design that we would diagram this way.

| 1V1 = dose of caffeine
| 0mg | 100 mg | 200 mg
1/ n=10 [ n=10 | n=10
2/ n=10 [ n=10 | n=10
IV2=days3/ n=10 | n=10 | n=10
4/ n=10 [ n=10 | n=10
5/ n=10 [ n=10 | n=10

Gee, it's really a shame we had to leave out the gender variable. Well, actually we don't. We can
incorporate gender as a third variable in a factorial design, making our design a three-factor design,



as 3x5x2 design. We might diagram it this way.

‘ IV3 = gender

| males | females

| IVi=dose of caffeine || 1V1 = dose of caffeine

| 0mg |100mg|200mg | Omg | 100 mg | 200 mg
1 n=5 [ n=5 [ n=5 |[ n=5 [ n=5 [ n=5
2[ n=5 [ n=5 [ n=5 |[ n=5 [ n=5 [ n=5

IV2=days3| n=5 | n=5 [ n=5 || n=5 | n=5 | n=5

4 n=5 [ n=5 [ n=5 |[ n=5 [ n=5 [ n=5
5 n=5 [ n=5 [ n=5 |[ n=5 [ n=5 [ n=5

Now we have to decide which factors to make within subjects and which to make between subjects.
To a certain extent, these decisions are made for us by nature. Gender will be between subjects.
Subjects can only be tested repeatedly if we make days a within-subjects variable. So our only
decision concerns dose. If we test dose between subjects, then we have a three-factor mixed
factorial design with repeated measures on one factor. If we somehow find a way to test dose
within subjects (it wouldn't be easy!), then we have a three-factor mixed factorial design with
repeated measures on two factors. In principle, it's possible to have repeated measures on all
factors, although that is clearly not possible in this particular experiment, unless we are planning
some sex change operations as part of our design.

Main Effects. The change produced in the DV by an 1V is called an effect. Technically, this
definition of "effect” would apply only to experiments with a manipulated IV, which is to say with
random assignment of subjects to groups and other appropriate controls for confounding variables,
because it is only in these cases that we may assume a cause-and-effect relationship between the 1V
and DV. If the IV is not manipulated, for example because we don't have random assignment of
subjects to treatment groups, then we have a quasi-experiment and the data are
observational/correlational in nature. The simple existence of correlation does not imply causality.

Therefore, we will expand the definition of "effect™ as follows: any change in the DV associated
with a change in the 1V is called an effect. Instead of saying "associated with," we could also say
"related to" or "correlated with." We must be careful, however, when we have a quasi-experiment.
If we go so far as to say a change in the DV was an "effect of the IV," then we have overstepped the
limitations of observational data. This is a causal statement.

Nevertheless, it is convenient shorthand to refer to "an effect of an I\V."" Although we might prefer to
say "this effect is associated with this I1\," we often go for the lazy way out and say simply "this
change in the DV is an effect of this IV." Each IV in an experiment has at least one potential effect
associated with it. In a single factor experiment, if the value of the DV changes at different levels of
the IV, then we have observed an "effect of the V" (which may or may not be statistically
significant and may or may not actually be caused by the V). This type of effect is called a main
effect. In factorial designs, there is a potential main effect associated with each of the 1Vs. Thus, in a
two-factor design, we are looking for two potential main effects. In a three-factor design, we are
looking for three potential main effects. And so on.



Suppose our summary statistics from the single-factor finger tapping experiment looked like this,
where the means and standard deviations are in taps per minute. (One such experiment actually
turned out this way.)

| IV1 = dose of caffeine
| Omg | 100mg | 200 mg

M=2448 | M = 246.4 | M = 248.3
sd =2.394 | sd = 2.066 |sd = 2.214
n=10 n=10 n=10

Notice that mean finger-tapping rate for the three groups differs. This would be described as a main
effect of dose of caffeine. It's a main effect because the difference in the means is associated
entirely with different levels of that one IV. It still remains to do a statistical test to see if the main
effect is statistically significant. It is, as it turns out, and so we can say it is a statistically significant
main effect of dose of caffeine [F(2, 27) = 6.18, p = .0062].

Now let's consider the experiment where we looked at both dose of caffeine and gender as our 1Vs,
both tested between subjects. Let's suppose the results came out like this. (I made these up.)

\ IV1 = dose of caffeine
| Omg | 100mg | 200 mg
M=243.6 | M =246.0 | M = 249.6
men |sd=2.608 |sd=2.915 |sd=1.673
IV2 = gender n=5 n=>5 n=>s
M =246.0 | M =246.8 | M =247.0
women|sd = 1.581 | sd = 0.837 | sd = 2.000
n=>5 n=5 n=5

To see if there is a main effect of dose, we need to calculate the overall means for dose, collapsing
over gender. These are the same as in the previous table. So there is a main effect of dose of
caffeine, and statistical analysis once again shows that it is statistically significant [F(2, 24) = 7.28, p
=.0034]. To see if there is a main effect of gender we collapse over dose and calculate the overall
means for men and women. We find the mean for men is M = 246.4 and for women is M = 246.6. It
would be stretching a point to call this a main effect. Statistical analysis will undoubtedly show no
significant difference here [F(1, 24) = .07, p = .79].

Simple Effects. Simple effects are like main effects, except that they are effects considered only at
one level of other variables. For example, look at the means for men in the table above. Finger-
tapping rate increases over doses of caffeine by 6.0 taps per minute, not a big increase perhaps, but
a statistically significant one nevertheless [F(2, 12) = 7.56, p = .0075]. This is an example of a
simple effect. If we look at the means for women, we see that they also increase over doses but not
nearly as much. In fact, the change is not statistically significant [F(2, 12) = .58, p = .57]. Thus,
there was no significant simple effect of caffeine dose on women.

Interaction Effects. When the simple effect of 11 is different at different levels of IV, then we
have an interaction between IV1 and V2. Here we have an interaction between dose of caffeine



and gender, and it is statistically significant, too. We would say we have a statistically significant
dose x gender interaction [F(2, 24) = 3.87, p = .035]. The "x" symbol is read "by" when you are
reading about the interaction. It is a "dose by gender" interaction. This would be called a two-way
interaction, because it is an interaction between two variables. The key to recognizing an interaction
effect is this: while it's possible to describe a main effect in words by referring to only one 1V, it's
impossible to completely describe an interaction in words without referring to at least two 1Vs.
"Overall, finger-tapping rate increased with increasing doses of caffeine” (main effect). "However,
with increasing doses of caffeine, finger-tapping rate increased more for men than it did for women™
(interaction).

When a factorial design is used, there is a potential interaction effect for all possible combinations of
the 1Vs. Let's consider the three-factor design described above, in which the IVs were dose, day, and
gender. Each of these Vs has a potential main effect associated with it: a main effect of dose, a
main effect of day, and a main effect of gender. There are also three potential two-way interactions:
dose x day, dose x gender, and day x gender. Finally, there is also one potential three-way
interaction: dose x day x gender.

As the number of factors in an experiment increases, the number of potential interactions increases
rapidly. With four 1Vs, there would be six potential two-way interactions, four potential three-way
interactions, and one potential four-way interaction. Imagine trying to figure out what a four-way
interaction looks like! Now imagine trying to explain it to your readers!!

Part 2: Correlational Designs and Regression

Designs With Numerical 1Vs. Let's continue with our attempt to find a relationship between
amount of caffeine consumed and finger-tapping rate. One way we could do this is to have a group
of people write down everything they eat for a 24-hour period and then come into the lab to have
finger-tapping rate measured. We calculate the amount of caffeine in what each subject has eaten (in
milligrams) and pair that value with the subject's finger-tapping score.

In this "experiment” we no longer have groups of subjects. Our IV now is numerical and varies
continuously among our subjects (or potentially continuously). Thus, we can no longer test for a
difference among group means. Instead, we look for a relationship between the number that
represents the 1V for each subject and the number that represents the DV. One subject's data might
look like this: (318 mg of caffeine, 253 taps per minute).

This is called a correlational design. Correlational designs are also usually observational, because
once again we have not manipulated a variable by randomly assigning anyone to conditions of an
experiment. We would analyze the data from such a study by calculating a correlation coefficient or
by plotting a scatterplot and determining the best fit regression line through the plotted points. Such
a plot appears below.
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The relationship between the two variables is shown not by a difference in means but by a pattern in
the plotted points, namely that they trend from the lower left corner of the graph to the upper right
corner. This indicates a positive correlation, and it is statistically significant (r = .59, p <.001). This
is a simple correlational design (or a simple regression analysis) because there is one predictor
variable (1V) and one response (DV), both of which are numerical.

Multiple Regression. Finger tapping rate also tends to slow down with age. (As does a lot of
things!) So we might also want to record the age of our subjects and include that as a second
numerical predictor in our regression analysis. We now have two numerical predictors (1Vs) and a
numerical response (DV). The design is still correlational (and observational), but the analysis would
now be called a multiple regression (because of the multiple predictors).

In the last study, we elected to control for the age of the subjects by including age as a predictor in a
multiple regression analysis. If there is an effect of age on finger tapping, the multiple regression
should show it. More importantly (perhaps), if age and caffeine intake are confounded, the multiple
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regression analysis should be able to tease apart that confound. For example, suppose younger
people tend to drink much more caffeine than older people. Such a relationship between the Vs
creates a confound, and multiple regression should allow us to tease these variables apart. (*Should"
is not "will," however.)

Let's look at another possibility. Older people may respond the same to low amounts of caffeine as
younger people do, but may respond less to higher doses. This is not a confound. This is an
interaction effect. Multiple regression should allow us to see this as well.

Analysis of Covariance. Another way we could have controlled for the effect of age was to use
subjects who are all the same age, or nearly the same age. We might use all college students, for
example. We don't get to see an effect of age (if there is one) in the analysis, but at the same time,
the DV is not "contaminated™ by "nuisance variability” due to age that we may not be interested in.
So let's adopt this strategy for our last study.

Let's say we have 30 subjects, just as in the very first experiment at the top of this discussion.
Furthermore, we're not about to leave it to fate how much caffeine they consume. We're going to
control caffeine dose experimentally. We're going to randomly assign 3 subjects each to 10 different
doses of caffeine as follows: 0 mg, 25 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 400
mg, and 500 mg. The result would be a randomized experiment but with a numerical IV. There is
nothing to stop us from analyzing this with ANOVA (as if the IV were any other grouping variable),
but we would be silly to do so. The correct analysis would still be regression.

We're not going to let gender create any uninteresting nuisance variability because all of our subjects
are going to be male. However, we are going to assign these males to two groups at random. One
group will do the finger tapping test with their preferred hand, and the other group will do it with
their nonpreferred hand.

We now have two 1Vs: dose of caffeine and hand. One we are treating as a numerical variable
(dose), and the other is clearly a grouping variable. It looks like we have a peculiar sort of hybrid
design that is a cross between the grouped designs we had initially and the correlational designs
we've been discussing in Part 2. Can we handle this?

We can indeed! Different textbooks would call such a design different things, but it doesn't really
matter much what we call it. I'm going to continue to call it correlational because of the existence of
the numerical predictor (IV). And because we're going to analyze the data using regression analysis.
Using what are called "dummy codes" for the grouping variable (hand), we can include it in the
regression analysis just like any other numerical predictor. (Well, not just like!)

When we have a mixture of numerical predictors and factors as our Vs, we will call the regression
analysis that we do an analysis of covariance. Not everyone agrees with this terminology. Analysis
of covariance, or ANCOVA, can also be treated as an ANOVA, in which the numerical predictor is
called the covariate. We'll discuss these issues when the time comes. All you need to know now is

that such designs are possible.

I'll give you one more thing to think about, however. If we insisted on treating this last study as if we
had two factors as Vs, is there any way we could have had a balanced design?
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