Calculus 1 Test 4 Review Sun 8:00 AM - Mon 8:00 PM

Riemann Sums

1. The graph of a function y = f(x) is shown below.

(a) Divide the closed interval [—1,5] into 3 equal subintervals and draw the correspond-
ing rectangles using the left endpoints of each subinterval.

11

ol y=T1)

9

8

7

6

5

3

2

1
4443421101 2 3 45 6 7 8 9

(b) Evaluate the Riemann sum for y = f(x) on the interval [—1,5] for n = 3, taking
the sample points to be right endpoints.



2. The graph of f(x) = 2* is given below.

(a) Divide the interval [—2,2] into four subintervals of equal length. Sketch the corre-
sponding rectangles by using right endpoints. Then evaluate the Riemann sum.
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3. Use the figures to calculate the left and right Riemann sums for the function f on the
interval [1,6] with n = 5.
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Definite Integral in Terms of Areas

4. The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
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5. The figure shows the areas of regions bounded by the graph of f and the x—axis. Evaluate
J f(x)dx.
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6. In the following figure the areas of the shaded regions are 3, 2, and 7 unit squares re-
spectively.
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7. The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.




8. Consider the following graph of y = f(x).
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(a) On what interval is g increasing and decreasing? Briefly explain.

(b) Where does g have a maximum value?
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10. Define g(x) = J f(t) dt where f is the function whose graph is given below and x is in
0
[0, 71.

On what interval(s) is g decreasing? Briefly explain.

11. Evaluate the following integrals by interpreting them in terms of areas.
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(b) Evaluate J V1 —x2dx (Hint: use the graph of f(x) = /1 —x?)
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f(x)dx = 5.7, find the value of J f(x)dx.
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Indefinite Integrals

14. Evaluate the following integrals.
(a) |(x®—3x%) dx
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Initial Value Problems

15. Find f(x) if f'(x) = 2x and f(0) =2

16. Find f(x) if f'(x) = cos(x) and f (g) — 1.

17. Find f(x) if f"(x) = =24 12x — 12x*, f(0) =4, f'(0) =12

18. A particle is moving with the given data. Find the position of the particle.
(a) v(t) =sint—cost, s(0) =0
(b) a(t) =2t+15s(0) =3, v(0) =-2



Fundamental Theorem of Calculus(FTC)

(FTC Part I)

19. Find the derivative, g'(x), of each of the following functions.
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(FTC Part II)

Definite Integrals

20. Evaluate the following definite integrals.
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