0.1 U-Substitution

We make a u-substitution to fill in the gaps in the equation

$$\int f(g(x))g'(x) \ dx = F(g(x)) + C.$$

If we let

$$u = g(x)$$

then

$$du = g'(x) dx$$

and the original integral can be rewritten as

$$\int f(g(x))g'(x) \ dx = \int f(u) \ du.$$

We can now try to find an anti-derivative of f(u):

$$\int f(u) \ du = F(u) + C$$

and back substituting for u gives

$$F(u) + C = F(g(x)) + C.$$

Now we can conclude that

$$\int f(g(x))g'(x) \ dx = F(g(x)) + C.$$

Examples of U-Substitution

US 1. To compute $\int 2x \cos(x^2 + 1) dx$, we let $u = x^2 + 1$. We have,

$$u = x^2 + 1$$
$$du = 2x \ dx$$

and the integral can be written as

$$\int 2x \cos(x^2 + 1) \, dx = \int \cos(x^2 + 1) \, 2x \, dx = \int \cos(u) \, du.$$

The last integral can be computed as

$$\int \cos(u) \ du = \sin(u) + C$$

and by back substituting, we have

$$\sin(u) + C = \sin(x^2 + 1) + C.$$

Thus, using u-substitution we can conclude that

$$\int 2x \cos(x^2 + 1) \ dx = \sin(x^2 + 1) + C.$$

US 2. To compute $\int 2x(x^2+1)^4 dx$, we let $u=x^2+1$. We have,

$$u = x^2 + 1$$

$$du = 2x \ dx$$

and the integral can be written as

$$\int 2x(x^2+1)^4 dx = \int (x^2+1)^4 2x dx = \int u^4 du.$$

$$\int u^4 \ du = \frac{u^5}{5} + C$$

and by back substituting, we have

$$\frac{u^5}{5} + C = \frac{1}{5}(x^2 + 1)^5 + C.$$

Thus, using u-substitution we can conclude that

$$\int 2x(x^2+1)^4 dx = \frac{1}{5}(x^2+1)^5 + C.$$

US 3. To compute $\int 2xe^{(x^2+1)} dx$, we let $u = x^2 + 1$. We have,

$$u = x^2 + 1$$

$$du = 2x \ dx$$

$$\int 2xe^{(x^2+1)} \ dx = \int e^{(x^2+1)} \ 2x \ dx = \int e^u \ du.$$

The last integral can be computed as

$$\int e^u \ du = e^u + C$$

and by back substituting, we have

$$e^u + C = e^{(x^2+1)} + C.$$

Thus, using u-substitution we can conclude that

$$\int 2xe^{(x^2+1)} \ dx = e^{(x^2+1)} + C.$$

US 4. To compute
$$\int 2x\sqrt{x^2+1} \ dx$$
, we let $u=x^2+1$. We have,

$$u = x^2 + 1$$
$$du = 2x \ dx$$

$$\int 2x\sqrt{x^2+1} \ dx = \int \sqrt{x^2+1} \cdot 2x \ dx = \int \sqrt{u} \ du.$$

$$\int \sqrt{u} \ du = \int u^{1/2} \ du = \frac{u^{3/2}}{3/2} + C = \frac{2}{3}u^{3/2} + C$$

and by back substituting, we have

$$\frac{2}{3}u^{3/2} + C = \frac{2}{3}(x^2 + 1)^{3/2} + C.$$

Thus, using u-substitution we can conclude that

$$\int 2x\sqrt{x^2+1} \ dx = \frac{2}{3}(x^2+1)^{3/2} + C.$$

US 5. To compute $\int \frac{2x}{x^2+1} dx$, we let $u=x^2+1$. We have,

$$u = x^2 + 1$$

$$du = 2x dx$$

$$\int \frac{2x}{x^2 + 1} \ dx = \int \frac{1}{x^2 + 1} \cdot 2x \ dx = \int \frac{1}{u} \ du.$$

The last integral can be computed as

$$\int \frac{1}{u} du = \ln|u| + C$$

and by back substituting, we have

$$\ln|u| + C = \ln|x^2 + 1| + C = \ln(x^2 + 1) + C.$$

Thus, using u-substitution we can conclude that

$$\int \frac{2x}{x^2 + 1} \ dx = \ln(x^2 + 1) + C.$$

US 6. To compute $\int e^x \sin(e^x) dx$, we let $u = e^x$. We have,

$$u = e^x$$

$$du = e^x dx$$

and the integral can be written as

$$\int e^x \sin(e^x) \ dx = \int \sin(e^x) \cdot e^x \ dx = \int \sin(u) \ du.$$

The last integral can be computed as

$$\int \sin(u) \ du = -\cos(u) + C$$

and by back substituting, we have

$$-\cos(u) + C = -\cos(e^x) + C.$$

Thus, using u-substitution we can conclude that

$$\int e^x \sin(e^x) \ dx = -\cos(e^x) + C.$$

US 7. To compute $\int 3x^2 \sec(x^3) \tan(x^3) dx$, we let $u = x^3$. We have,

$$u = x^3$$

$$du = 3x^2 dx$$

and the integral can be written as

$$\int 3x^2 \sec(x^3) \tan(x^3) dx = \int \sec(x^3) \tan(x^3) \cdot 3x^2 dx$$
$$= \int \sec(u) \tan(u) du.$$

The last integral can be computed as

$$\int \sec(u)\tan(u) \ du = \sec(u) + C$$

and by back substituting, we have

$$\sec(u) + C = \sec(x^3) + C.$$

Thus, using u-substitution we can conclude that

$$\int 3x^2 \sec(x^3) \tan(x^3) \ dx = \sec(x^3) + C.$$

US 8. To compute $\int x^3 \cos(x^4) dx$, we let $u = x^4$. We have,

$$u = x^4$$

$$du = 4x^3 dx$$

and the integral can be written as

$$\int x^3 \cos(x^4) dx = \int \cos(x^4) \cdot x^3 dx$$
$$= \int \cos(x^4) \cdot \frac{1}{4} \cdot 4x^3 dx$$
$$= \int \frac{1}{4} \cos(u) du.$$

$$\int \frac{1}{4}\cos(u) \ du = \frac{1}{4}\sin(u) + C$$

and by back substituting, we have

$$\frac{1}{4}\sin(u) + C = \frac{1}{4}\sin(x^4) + C.$$

Thus, using u-substitution we can conclude that

$$\int x^3 \cos(x^4) \ dx = \frac{1}{4} \sin(x^4) + C.$$

US 9. To compute $\int xe^{-x^2} dx$, we let $u = -x^2$. We have,

$$u = -x^2$$

$$du = -2x dx$$

and the integral can be written as

$$\int xe^{-x^2} dx = \int e^{-x^2} \cdot x \, dx$$

$$= \int e^{-x^2} (-\frac{1}{2}) (-2x) \, dx$$

$$= \int -\frac{1}{2}e^u \, du.$$

The last integral can be computed as

$$\int -\frac{1}{2}e^u \ du = -\frac{1}{2}e^u + C$$

and by back substituting, we have

$$-\frac{1}{2}e^u + C = -\frac{1}{2}e^{-x^2} + C.$$

Thus, using u-substitution we can conclude that

$$\int xe^{-x^2} dx = -\frac{1}{2}e^{-x^2} + C.$$

US 10. To compute $\int \sin(3x) \ dx$, we let u = 3x. We have,

$$u = 3x$$

$$du = 3 dx$$

and the integral can be written as

$$\int \sin(3x) \ dx = \int \sin(3x) \cdot \frac{1}{3} \cdot 3 \ dx = \int \frac{1}{3} \sin(u) \ du.$$

The last integral can be computed as

$$\int \frac{1}{3}\sin(u) \ du = -\frac{1}{3}\cos(u) + C$$

and by back substituting, we have

$$-\frac{1}{3}\cos(u) + C = -\frac{1}{3}\cos(3x) + C.$$

Thus, using u-substitution we can conclude that

$$\int \sin(3x) \ dx = -\frac{1}{3}\cos(3x) + C.$$

US 11. To compute $\int e^{\frac{x}{2}} dx$, we let $u = \frac{x}{2}$. We have,

$$u = \frac{x}{2}$$

$$du = \frac{1}{2} dx$$

and the integral can be written as

$$\int e^{\frac{x}{2}} \ dx = \int e^{\frac{x}{2}} \cdot 2 \cdot \frac{1}{2} \ dx = \int 2e^{u} \ du.$$

The last integral can be computed as

$$\int 2e^u \ du = 2e^u + C$$

and by back substituting, we have

$$2e^u + C = 2e^{\frac{x}{2}} + C.$$

Thus, using u-substitution we can conclude that

$$\int e^{x/2} \ dx = 2e^{x/2} + C.$$

US 12. To compute $\int (4x+3)^5 dx$, we let u=4x+3. We have,

$$u = 4x + 3$$

$$du = 4 dx$$

and the integral can be written as

$$\int (4x+3)^5 dx = \int (4x+3)^5 \cdot \frac{1}{4} \cdot 4 dx = \int \frac{1}{4} u^5 du.$$

The last integral can be computed as

$$\frac{1}{4} \int u^5 \ du = \frac{1}{4} \cdot \frac{u^6}{6} + C = \frac{u^6}{24} + C$$

and by back substituting, we have

$$\frac{u^6}{24} + C = \frac{(4x+3)^6}{24} + C.$$

Thus, using u-substitution we can conclude that

$$\int (4x+3)^5 dx = \frac{1}{24}(4x+3)^6 + C.$$

US 13. To compute $\int \frac{1}{x \ln^2(x)} dx$, we let $u = \ln(x)$. We have,

$$u = \ln(x)$$

$$du = \frac{1}{x} dx$$

and the integral can be written as

$$\int \frac{1}{x \ln^2(x)} dx = \int \frac{1}{\ln^2(x)} \cdot \frac{1}{x} dx = \int \frac{1}{u^2} du.$$

The last integral can be computed as

$$\int \frac{1}{u^2} du = \int u^{-2} du = \frac{u^{-1}}{-1} + C = -\frac{1}{u} + C$$

and by back substituting, we have

$$-\frac{1}{u} + C = -\frac{1}{\ln(x)} + C.$$

Thus, using u-substitution we can conclude that

$$\int \frac{1}{x \ln^2(x)} dx = -\frac{1}{\ln(x)} + C.$$

US 14. To compute $\int \sin^4(x) \cos(x) dx$, we let $u = \sin(x)$. We have,

$$u = \sin(x)$$
$$du = \cos(x) dx$$

and the integral can be written as

$$\int \sin^4(x)\cos(x) \ dx = \int u^4 \ du.$$

The last integral can be computed as

$$\int u^4 \ du = \frac{u^5}{5} + C$$

and by back substituting, we have

$$\frac{u^5}{5} + C = \frac{1}{5}\sin^5(x) + C.$$

Thus, using u-substitution we can conclude that

$$\int \sin^4(x)\cos(x) \ dx = \frac{1}{5}\sin^5(x) + C.$$

US 15. To compute $\int \tan(x) dx$, we first rewrite the integral:

$$\int \tan(x) \ dx = \int \frac{\sin(x)}{\cos(x)} \ dx.$$

Now, let $u = \cos(x)$; then $du = -\sin(x) dx$ and the integral can be written as

$$\int \frac{\sin(x)}{\cos(x)} dx = \int \frac{1}{\cos(x)} \sin(x) dx$$
$$= -\int \frac{1}{\cos(x)} (-\sin(x)) dx$$
$$= -\int \frac{1}{u} du.$$

The last integral can be computed as

$$-\int \frac{1}{u} du = -\ln|u| + C$$

and by back substituting, we have

$$-\ln|u| + C = -\ln|\cos(x)| + C = \ln|\sec(x)| + C.$$

Thus, using u-substitution we can conclude that

$$\int \tan(x) \ dx = \ln|\sec(x)| + C.$$

US 16. To compute the integral $\int \tan(x) dx$, we first rewrite the integral:

$$\int \tan(x) \ dx = \int \frac{\sin(x)}{\cos(x)} \ dx.$$

Now, let $u = \cos(x)$, then $du = -\sin(x) dx$ and the integral can be rewritten as

$$\int \frac{\sin(x)}{\cos(x)} \ dx = \int -\frac{1}{u} \ du.$$

The last integral can be computed as

$$\int -\frac{1}{u} \, du = -\ln|u| + C$$

and by back substituting, we have

$$-\ln|u| + C = -\ln|\cos(x)| + C = \ln|\sec(x)| + C.$$

Thus, using u-substitution we can conclude that

$$\int \tan(x) \ dx = \ln|\sec(x)| + C.$$

US 17. To compute the integral $\int \sec(x) dx$, we first rewrite the integral:

$$\int \sec(x) \ dx = \int \sec(x) \frac{\sec(x) + \tan(x)}{\sec(x) + \tan(x)} \ dx.$$

Distributing in the numerator, we get

$$\int \sec(x) \frac{\sec(x) + \tan(x)}{\sec(x) + \tan(x)} dx = \int \frac{\sec^2(x) + \sec(x) \tan(x)}{\sec(x) + \tan(x)} dx.$$

Now, let $u = \sec(x) + \tan(x)$, then $du = [\sec(x)\tan(x) + \sec^2(x)] dx$ and the integral can be rewritten as

$$\int \frac{\sec^2(x) + \sec(x)\tan(x)}{\sec(x) + \tan(x)} dx = \int \frac{1}{u} du.$$

$$\int \frac{1}{u} \, du = \ln|u| + C$$

and by back substituting, we have

$$\ln |u| + C = \ln |\sec(x) + \tan(x)| + C.$$

Thus, using u-substitution we can conclude that

$$\int \sec(x) \ dx = \ln|\sec(x) + \tan(x)| + C.$$