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We make a u-substitution to fill in the gaps in the equation

[ a@)g @) do = Figla)) +C.

If we let
u=g(z)

then
du = ¢'(x) dx

and the original integral can be rewritten as

[ sta@)g @ e = [ ) au

We can now try to find an anti-derivative of f(u):
/f(u) du = F(u)+C

and back substituting for u gives
F(u)+C = F(g(x))+C.

Now we can conclude that

/ Fg(@))g (@) de = Flg(x)) + C.



Examples of U-Substitution

US 1. To compute /2:17COS(:702 +1) dz, we let u = 2% + 1.

We have,
u=x*+1

du = 2z dx

and the integral can be written as

/235 cos(z?+1) dv = /cos(a:2+1) 2r dx = /Cos(u) du.
The last integral can be computed as
/cos(u) du = sin(u) + C
and by back substituting, we have
sin(u) + C = sin(2* + 1) + C.

Thus, using u-substitution we can conclude that

/Qx cos(z® 4+ 1) dx = sin(2* + 1) + C.

US 2. To compute /295(362 +1)* dz, we let u = 2% + 1. We

have,
w=ax’+1

du = 2x dx

and the integral can be written as

/2:6(3:2 + 1) dr = /(:c2 +1)* 22 do = /u4 du.
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The last integral can be computed as
5
/ ut du = % +C

and by back substituting, we have

u5

?+C’:%(a:2+1)5+0.

Thus, using u-substitution we can conclude that

/2x(m2 + 1)t de =1(2*+1)°+C.

US 3. To compute /2$€($2+1) dr, we let u = 22 + 1. We

have,
uw=2>+1

du = 2z dx

/er(mgﬂ) dr = /€(x2+1) 2z dx = /e“ du.

The last integral can be computed as
/ e du=e"+C
and by back substituting, we have

e+ C =@ 4

Thus, using u-substitution we can conclude that

/2:66(””2“) dx = @D 1 .
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US 4. To compute /Qx\/aﬂ +1dx, welet u=22+1. We

have,
u=x>+1

du = 2x dx

/21:\/:102—1—1dx:/\/x2+1~2xdx:/\/ﬁdu.

The last integral can be computed as
e
/\/ﬂalu:/ul/2 du:%—i—C’:%u?’m#—C
and by back substituting, we have
2 2
§u3/2 +C = g(:f +1)%2 4 C.

Thus, using u-substitution we can conclude that

/23:\/1‘2 +1de =32+ 1)%2 4 C.

US 5. To compute / v dx, we let u = 22 + 1. We have,
x?+1
u=1x*+1
du = 2x dx

2 1 1
* dr = 20 dx = | — du.
241 241 U

The last integral can be computed as

1
/—du:ln|u|+C
u
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and by back substituting, we have
Injul+C=z*+1|+C =In(z*+1) + C.

Thus, using u-substitution we can conclude that

2
/x2f—1 dr =1In(z* + 1) + C.

US 6. To compute /ea’ sin(e”) dx, we let u = e”. We have,
u=-e
du = e* dx

and the integral can be written as

/ e? sin(e”) dz = / sin(e?) - €@ do = / sin(u) du.

The last integral can be computed as
/sin(u) du = —cos(u) + C
and by back substituting, we have

—cos(u) + C' = —cos(e”) + C.

Thus, using u-substitution we can conclude that

/e”‘" sin(e”) dx = — cos(e”) + C.

US 7. To compute /sz sec(r?) tan(z2?) dx, we let u = 2°.

We have,

’U,:l'3



du = 32 dx

and the integral can be written as
/33:2 sec(z”) tan(z?) dox = /Sec(xS) tan(z?) - 32% dx
= /sec(u) tan(u) du.
The last integral can be computed as
/sec(u) tan(u) du = sec(u) + C

and by back substituting, we have
sec(u) + C = sec(x®) + C.

Thus, using u-substitution we can conclude that

/3x2 sec(2?) tan(z?) do = sec(z®) + C.

US 8. To compute /x3 cos(z?) dx, we let u = z*. We have,

U=z
du = 42° dx

and the integral can be written as
/xg cos(z*) dx = /cos(x4) -2 dx
= /cos(x4) 42 do
= /%cos(u) du.
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The last integral can be computed as

/ cos(u) du = §sin(u) + C
and by back substituting, we have

Lsin(u) 4+ C = sin(a?) + C.

Thus, using u-substitution we can conclude that

/xg cos(z?) dx = Lsin(z*) + C.

US 9. To compute /xe”z dx, we let u = —22. We have,

u:—x2

du = —2x dx

and the integral can be written as

/:ce£r2 dr = /e’”2 -z dx

_ /e—f"’(—g) (~20) da

:/—%e“ du.

The last integral can be computed as
/—%e“ du=—3e"+C
and by back substituting, we have

—3e"+C = —%e’xQ +C.

Thus, using u-substitution we can conclude that

2

/9(:65102 de = — e 1 C.



US 10. To compute /sin(?)x) dx, we let u = 3z. We have,
u =3z
du =3 dx
and the integral can be written as
/sin(?)x) dx = /sin(?)m) +-3dr = / 3 sin(u) du.
The last integral can be computed as

/ $sin(u) du = —3 cos(u) + C

and by back substituting, we have
—3 cos(u) + C = —3 cos(3x) + C.

Thus, using u-substitution we can conclude that

/sin(?)x) dz = —3 cos(3z) + C.

US 11. To compute /63 dx, we let u = 5. We have,

U= —

2
1

du-§d$

and the integral can be written as

/eg26 dx:/eg-l%dm:/%“du.

The last integral can be computed as

/26“ du = 2e* +C
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and by back substituting, we have
2e" + C = 2e2 + C.

Thus, using u-substitution we can conclude that

/ex/z dr = 2" + C.

US 12. To compute /(4x +3)° dw, we let u = 4z + 3. We

have,
u=4r + 3

du =4 dx

and the integral can be written as

/(41:—1—3)5 dx:/(4x+3)5-}l-4dx:/}lu5 du.

The last integral can be computed as

6 6
l/u5du: -%+C'2u—+0

I
N

and by back substituting, we have

ub (4a + 3)°

—+C= +C.
24

Thus, using u-substitution we can conclude that

/(490 +3)° do = 5; (42 + 3)° + C.

US 13. To compute / dr, we let u = In(z). We

zIn’(x)
have,
u = In(x)
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du:%dx

and the integral can be written as

1 1 1 1
xIn*(x) In“(z) = u

The last integral can be computed as

1 -t 1
/—2du:/u_2du:u—+02——+0
U -1 U

and by back substituting, we have
1

1
u ¢= ~In(x) e

Thus, using u-substitution we can conclude that

1 1
/a:ln2(x) de = _ln(:v) +C

US 14. To compute /sin4(x) cos(x) dx, we let u = sin(z).
We have,

u = sin(z)
du = cos(z) dx

and the integral can be written as

/ sin(2) cos(w) dz = / u? du.

The last integral can be computed as
5
/ ut du = % +C

and by back substituting, we have

U5

?—i—C: Lsin®(z) + C.
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Thus, using u-substitution we can conclude that

/sin4(x) cos(z) dz = Lsin’(z) + C.

US 15. To compute /tan(:zs) dzx, we first rewrite the integral:

/ tan(z) do = / E; iz,

Now, let u = cos(z); then du = —sin(z) dr and the
integral can be written as

/ :g;((fsi du = / CO:@ sin(x) do
:_/% (—sin(z)) dz

cos(x

1
:—/—du.
u

The last integral can be computed as

1
—/— du=—Inlu|+C
u
and by back substituting, we have
—In|u| 4+ C = —In|cos(z)| + C = In|sec(x)| + C.

Thus, using u-substitution we can conclude that

/tan(x) dx = In|sec(z)| + C.

US 16. To compute the integral / tan(z) dzx, we first rewrite

/ tan(x) do = / <<>) iz,

the integral:
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Now, let u = cos(z), then du = —sin(z) dz and the
integral can be rewritten as

Jy o= [

The last integral can be computed as

1
/—— du=—1Inlu|+C
u
and by back substituting, we have
—In|u|+C = —In|cos(z)| + C = In|sec(z)| + C.

Thus, using u-substitution we can conclude that

/tan(z‘) dx = In|sec(x)| + C.

US 17. To compute the integral / sec(z) dx, we first rewrite
the integral:

/ sec(z) dr = / sec(y)Secl@) +tan(@)

sec(x) + tan(z)

Distributing in the numerator, we get

/sec(x)sec(x) + tan(z) dr — / sec” () + sec(x) tan(z) i

sec(x) + tan(z) sec(x) + tan(x)

Now, let u = sec(z) + tan(x), then du = [sec(x) tan(z) +
sec?(x)] dz and the integral can be rewritten as

/Secz(x) + sec(x) tan(z) / L

sec(x) + tan(z)
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The last integral can be computed as
1

/— du=1n|u|+C
u

and by back substituting, we have
In|u| + C = In|sec(z) + tan(z)| + C.

Thus, using u-substitution we can conclude that

/sec(x) dr = In|sec(x) + tan(x)| + C.



