1 Finding Limits Numerically

In this section, functions will be presented using formulas. We will determine the limit of a function by making an appropriate table of values.

NL 1. Determine the following limit:

$$
\lim _{x \rightarrow 3^{+}} x^{2}+2
$$

First, $x \rightarrow 3^{+}$means that x is near the number 3 and $x>3$. To conceptualize this numerically, consider the following pattern of numbers: 3.1, 3.01, 3.001, 3.0001.

To determine the limit numerically, we will plug these four values of x into the function and look for a pattern in the outputs.

x	3.1	3.01	3.001	3.0001
$x^{2}+2$	11.61	11.0601	11.006001	11.00060001

The outputs appear to be approaching the number 11, so we write

$$
\lim _{x \rightarrow 3^{+}} x^{2}+2=11
$$

In this example, we could have arrived at the answer by simply plugging in $x=3$. In general, when plugging in the value that x is approaching yields a reasonable answer, that answer is usually correct. We now turn our attention to examples where this shortcut does not work.

NL 2. Compute the following limit:

$$
\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}
$$

As in the previous example, x is near 3 but this time, $x<3$. We therefore use the following numerical values for x : 2.9, 2.99, 2.999, 2.9999 to generate the following table of values:

x	2.9	2.99	2.999	2.9999
$\frac{\|x-3\|}{x-3}$	-1	-1	-1	-1

The values of the function are not just approaching -1 , they actually are -1 and so we can conclude that

$$
\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}=-1
$$

It should be noticed that the shortcut of plugging in $x=3$ yields the meaningless indeterminate form $0 / 0$.

The next example has far-reaching consequences that will be exploited in the next chapter.

NL 3. Compute the following limit:

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}
$$

In this example, x is near 0 and $x>0$. The values of x we will use to generate a table of values are: .1,.01, . 001 and .0001 .

x	0.1	0.01	0.001	0.0001
$\frac{e^{x}-1}{x}$	1.052	1.005	1.0005	1.00005

Based on the numerical information provided in the table above, we conclude that

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}=1
$$

Again, observe that plugging $x=0$ into the function $f(x)=\frac{e^{x}-1}{x}$ yields the indeterminate form $\frac{0}{0}$.

NL 4. Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}
$$

This is a two-sided limit. We begin be computing each of the corresponding one-sided limits.

To compute the right side limit, we consider the following values for $x: .1, .01, .001$ and .0001 . Plugging these values into the function we generate the following table of values:

x	0.1	0.01	0.001	0.0001
$\frac{\sin (x)}{x}$	0.98	0.998	0.9998	0.99998

Based on this numerical evidence, it would be reasonable to guess that

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1
$$

To compute the left side limit, we can consider the following values for x : $-0.1,-0.01,-0.001$ and -0.0001 .

However, we can also make the following observation about the sine function:

$$
\sin (-x)=-\sin (x)
$$

which is to say that the sine function is odd.
As a result, we have the following

$$
\frac{\sin (-x)}{-x}=\frac{-\sin (x)}{-x}=\frac{\sin (x)}{x}
$$

which means that the suggested negative values for x in the left side limit will produce exactly the same values as their positive counterparts that were used in the right side limit.

Thus,

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1
$$

Moreover, since both one sided limits are the same, we can dispense with the direction and conclude

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Note, once again that the shortcut of plugging $x=0$ into the function $f(x)=\frac{\sin (x)}{x}$ yields the indeterminate form $\frac{0}{0}$.

NL 5. Consider the limit:

$$
\lim _{x \rightarrow-2^{-}} \frac{3}{x+2}
$$

First we observe that plugging in the value $x=-2$ gives $\frac{3}{0}$ which is undefined. Thus we are required to make a deeper analysis to determine the limit. Since the values of x are less than -2 , we consider values for x such as $-2.1,-2.01,-2.001$ and -2.0001 to make the following table of values:

x	-2.1	-2.01	-2.001	-2.0001
$\frac{3}{x+2}$	-30	-300	$-3,000$	$-30,000$

The numerical evidence suggests that as x approaches -2 from the left, the values of $f(x)=\frac{2}{x-3}$ are decreasing without bound. We conclude that

$$
\lim _{x \rightarrow-2^{-}} \frac{3}{x+2}=-\infty
$$

This result has geometric significance. It means that the line $x=-2$ is a vertical asymptote for the graph of the function $f(x)=\frac{3}{x+2}$.

NL 6. Consider the limit:

$$
\lim _{x \rightarrow \frac{\pi}{2}-} \tan (x)
$$

Since

$$
\begin{gathered}
\tan (x)=\frac{\sin (x)}{\cos (x)} \\
\sin \left(\frac{\pi}{2}\right)=1 \text { and } \cos \left(\frac{\pi}{2}\right)=0
\end{gathered}
$$

we have

$$
\tan \left(\frac{\pi}{2}\right)=\frac{1}{0}
$$

which is undefined, so a deeper analysis is required to determine the limit. To understand the behavior of the tangent function for values of x near $\frac{\pi}{2}$, use a calculator to make a table of values noting that $\frac{\pi}{2} \approx 1.570796327$.

x	1.5	1.57	1.5707	1.57079
$\tan (x)$	14.101	$1,255.77$	$10,381.33$	$158,057.91$

The numerical evidence suggests that as x approaches $\frac{\pi}{2}$ from the left, the values of $f(x)=\tan (x)$ are increasing without bound. Therefore, we are led to conclude that

$$
\lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan (x)=\infty
$$

This result has geometric significance. It means that the graph of the function $f(x)=\tan (x)$ has a vertical asymptote at $x=\frac{\pi}{2}$.

NL 7. Consider the limit:

$$
\lim _{x \rightarrow-\infty} \frac{2 x+1}{3 x-4}
$$

Since $x \rightarrow-\infty$, we will use the following values when constructing our table: $-10,-100,-1,000$ and $-10,000$.

x	-10	-100	-1000	-10000
$\frac{2 x+1}{3 x-4}$.5588	.6546	.6654	.6665

The numerical evidence suggests that as x approaches $-\infty$, that is, as x decreases without bound, the values of $\frac{2 x+1}{3 x-4}$ are approaching the decimal $.6666 \ldots$ which we recognize as the fraction $2 / 3$. Hence,

$$
\lim _{x \rightarrow-\infty} \frac{2 x+1}{3 x-4}=\frac{2}{3}
$$

This result has geometric significance. It means that the line $y=2 / 3$ is a horizontal asymptote for the graph of the function $f(x)=\frac{2 x+1}{3 x-4}$.

