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0.1 Computing Limits Analytically

In this section, functions will be presented using formulas. We
will determine the limit of a function by making an appro-
priate algebraic manipulations. We will factor polynomials,
multiply conjugate radicals, simplify complex fractions, com-
pute absolute values and make sign analyses.

Factor and Cancel

Factoring polynomials is an important part of finding
limits analytically. A key fact that makes factoring easier
is the following: if p(x) is a polynomial and p(a) = 0,
then p(x) factors with (x-a) as one of the factors.

AL 1. Compute the limit: lim
x→4

x2 − 16

x2 − 4x
.

Plugging in the terminal value, x = 4, yields the in-
determinate form 0/0. To find this limit analytically, we
will factor the numerator and denominator and simplify
the fraction. Since the polynomials in both the numer-
ator and denominator have 4 as a root, they will both
have (x− 4) as a factor. Moreover, in the numerator we
have a difference of two perfect squares and such a
form always factors in the following way:

a2 − b2 = (a + b)(a− b).

Applying this general formula to our example, we get

x2 − 16 = (x + 4)(x− 4).

Next, in the denominator, we can factor out a common
factor of x from each of the terms, thereby reversing the
distributive property:

x2 − 4x = x(x− 4).
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With these factorizations we can reduce the fraction and
find the limit:

lim
x→4

x2 − 16

x2 − 4x
= lim

x→4

(x + 4)(x− 4)

x(x− 4)
(factoring)

= lim
x→4

x + 4

x
(canceling)

= 8/4

= 2.

Hence,

lim
x→4

x2 − 16

x2 − 4x
= 2.

AL 2. Compute the limit: lim
x→2

x2 + 3x− 10

x3 − 8
.

Plugging in the terminal value x = 2 yields the inde-
terminate form 0

0
. Since the polynomials in both the

numerator and denominator have 2 as a root, they will
both have (x − 2) as a factor. In the numerator, the
quadratic polynomial will factor (x − 2) times another
linear factor, say (ax+ b). We can figure out what a and
b have to be by multiplying (x − 2)(ax + b) and setting
the result equal to the original quadratic, x2 + 3x− 10.
We get a = 1 and b = 5, so

x2 + 3x− 10 = (x− 2)(x + 5).

We can use a similar strategy to factor the denomina-
tor, but the details are more complicated since the poly-
nomial is of degree 3. Factoring out (x − 2) leaves a
quadratic polynomial, say ax2+bx+c. Multiplying these
together and comparing with x3 − 8 gives, a = 1, b = 2
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and c = 4. We can also use the formula for the differ-
ence of two perfect cubes:

a3 − b3 = (a− b)(a2 + ab + b2).

Either way, we get the factorization

x3 − 8 = (x− 2)(x2 + 2x + 4).

Next, with these factorizations, we have

lim
x→2

x2 + 3x− 10

x3 − 8
= lim

x→2

(x− 2)(x + 5)

(x− 2)(x2 + 2x + 4)
(factoring)

= lim
x→2

x + 5

x2 + 2x + 4
(canceling)

=
2 + 5

22 + (2 · 2) + 4

=
7

12
.

Hence,

lim
x→2

x2 + 3x− 10

x3 − 8
=

7

12
.

Conjugate Radicals

AL 3. Compute the limit:

lim
x→1

x−
√
x

x− 1
.

The idea used in this problem is to multiply by the con-
jugate radical. Expressions of the form a+ b and a− b
are called conjugate radical expressions if either of the
terms a or b (or both) contains a square root. In our
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problem the expression x −
√
x in the numerator con-

tains a square root symbol and hence it has a conjugate
radical expression, namely x +

√
x. The significance of

conjugate radicals is revealed when they are multiplied
together. Applying the difference of two squares formula
(from right to left) we see that (x−

√
x)(x+

√
x) = x2−x.

The resulting expression no longer contains a square root
symbol. Let us perform the following operation on the
function in our problem:

lim
x→1

x−
√
x

x− 1
= lim

x→1

(
x−
√
x

x− 1

)
·
(
x +
√
x

x +
√
x

)
.

Notice that we have multiplied our original fraction by
one in the form of the conjugate radical over itself. The
point of undertaking this seemingly complexifying step
can be seen in what follows.

lim
x→1

x−
√
x

x− 1
= lim

x→1

x−
√
x

x− 1
· x +

√
x

x +
√
x

= lim
x→1

x2 − x

(x− 1)(x +
√
x)

= lim
x→1

x(x− 1)

(x− 1)(x +
√
x)

= lim
x→1

x

x +
√
x

=
1

2
.

In this last form, we can plug in the terminal value x = 1
to get the final answer 1

2
. In conclusion, by introducing

a the conjugate radical to the problem, then using the
difference of two squares formula and finally factoring
and canceling, we have

lim
x→1

x−
√
x

x− 1
=

1

2
.
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Here is another example that uses the conjugate radical:

AL 4. Compute the limit: lim
x→−3

x2 − 9

4−
√

13− x
.

If we plug in x = −3, the numerator and denomina-
tor are both 0. The conjugate of the radical expression
in the denominator is

4 +
√

13− x.

To simplify our calculations a little bit, lets multiply the
conjugates together separately:

(4−
√

13− x)(4+
√

13− x) = 16−(13−x) = 3+x = x+3.

Now back to our problem:

lim
x→−3

x2 − 9

4−
√

13− x
= lim

x→−3

(
x2 − 9

4−
√

13− x

)
·
(

4 +
√

13− x

4 +
√

13− x

)
= lim

x→−3

(x2 − 9)(4 +
√

13− x)

x + 3

= lim
x→−3

(x + 3)(x− 3)(4 +
√

13− x)

x + 3

= lim
x→−3

(x− 3)(4 +
√

13− x)

= (−3− 3)(4 +
√

13− (−3))

= (−6)(4 + 4)

= −48.

Complex Fractions

AL 5. Compute the limit: lim
x→4

1
x
− 1

4

x− 4
.
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Plugging in x = 4 yields the familiar 0/0 indeterminate
form. The algebra skills necessary to transform the func-
tion in the problem to one which allows plugging in x = 4
involve subtraction and division of fractions. The rules
are summarized as:

a

b
− c

d
=

ad− bc

bd
and

a
b
c
d

=
ad

bc
.

Applying these to our problem, we get

lim
x→4

1
x
− 1

4

x− 4
= lim

x→4

4−x
4x

x− 4

= lim
x→4

4− x

4x(x− 4)

= lim
x→4
− 1

4x

= − 1

16
.

AL 6. Compute the limit:

lim
x→−2

2
x−3 + x+4

5

x2 + 5x + 6
.

Carefully plugging in x = −2 gives 0
0
, so we begin simpli-

fying the complex fraction. Since this function is bulky,
let’s do the addition of fractions from the numerator sep-
arately:

2

x− 3
+

x + 4

5
=

10 + (x− 3)(x + 4)

5(x− 3)

=
x2 + x− 2

5(x− 3)

=
(x− 1)(x + 2)

5(x− 3)
.
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Now back to the original problem:

lim
x→−2

2
x−3 + x+4

5

x2 + 5x + 6
= lim

x→−2

(x−1)(x+2)
5(x−3)

(x + 2)(x + 3)

= lim
x→−2

(x− 1)(x + 2)

5(x− 3)(x + 2)(x + 3)

= lim
x→−2

(x− 1)

5(x− 3)(x + 3)

=
−3

5(−5)(1)
=

3

25
.

Sign Analysis

In the next few examples, we will investigate infinite lim-
its of rational functions. These occur at points where the
denominator of the rational function is approaching zero,
but at the same time, the numerator is not approaching
zero.

AL 7. Consider the limit: lim
x→0+

1

x
.

Plugging in x = ∞ yields the undefined expression
1
0
. As the denominator gets smaller and smaller, it will

divide into the numerator more and more times, causing
the fraction to “blow up”. In terms of the limit, it is rea-
sonable to expect an answer of either ∞ or −∞. A sign
analysis will determine which one. Since the values of x
are positive as x → 0+, the values of f(x) = 1

x
are also

positive. Furthermore, as the values of x decrease to-
wards zero, the values of the reciprocal, 1

x
increase with-

out bound.

Hence, we can conclude that

lim
x→0+

1

x
=∞.
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The geometric significance of this result is that the line
x = 0 (the y-axis) is a vertical asymptote for the graph
of the function f(x) = 1

x
. See the graph below.
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AL 8. Consider the limit: lim
x→3−

2

x− 3
.

First we observe that plugging in the value x = 3 gives
2
0

which is undefined and the fraction is “blowing up”
in the limit. A sign analysis will tell us if the limit is
±∞. Since x→ 3−, we have x < 3 and hence x− 3 < 0.
We see that the numerator is 2 and the denominator is
approaching 0 through negative values, and the values
of f(x) = 2

x−3 are negative. We conclude that

lim
x→3−

2

x− 3
= −∞.

This geometric significance of the result is that the line
x = 3 is a vertical asymptote for the graph of the func-
tion f(x) = 2

x−3 , as shown below.



0.1 Computing Limits Analytically 9

1.5 2 2.5

−15

−10

−5

x

f(x)

AL 9. Plugging x = 2 into the rational function

f(x) =
x + 1

x− 2

gives the undefined expression 3
0
. From this information,

we can conclude that the graph of the function has a
vertical asymptote at x = 2. This means that the one-
sided limits as x approaches 2 will give either∞ or −∞,
i.e.,

lim
x→2−

x + 1

x− 2
=∞ or −∞.

and

lim
x→2+

x + 1

x− 2
=∞ or −∞.

To determine which, we will do a sign analysis as follows.
Consider the left hand limit first:

lim
x→2−

x + 1

x− 2
.

The numerator is approaching 3, which is positive. The
denominator is approaching zero which is neither posi-
tive nor negative, but since x→ 2−, we know that x < 2
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and therefore x− 2 < 0. Hence the denominator is neg-
ative as x approaches 2 from the left. Since a positive
divided by a negative is negative, we get:

lim
x→2−

x + 1

x− 2
=

pos

neg
= −∞,

since the choices were only∞ and −∞. Now, we will do
a sign analysis on the right hand limit:

lim
x→2−

x + 1

x− 2
.

The numerator is approaching 3, which is positive. In
the denominator, since x→ 2+, we know that x > 2 and
therefore x−2 > 0. Hence the denominator is positive as
x approaches 2 from the right. Since a positive divided
by a positive is positive, we get:

lim
x→2−

x + 1

x− 2
=

pos

pos
=∞,

since the choices were only ∞ and −∞. The graph of
f(x) = x+1

x−2 near x = 2 looks like this:

1 2 3 4
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x + 1

x− 2



0.1 Computing Limits Analytically 11

AL 10. Plugging x = −1 into the rational function

f(x) =
2x

(x + 1)3

gives the undefined expression −2
0

. From this informa-
tion, we can conclude that the graph of the function has
a vertical asymptote at x = −1. This means that the
one-sided limits as x approaches -1 will give either ∞ or
−∞, i.e.,

lim
x→−1−

2x

(x + 1)3
=∞ or −∞.

and

lim
x→−1+

2x

(x + 1)3
=∞ or −∞.

To determine which, we will do a sign analysis as follows.
Consider the left hand limit first:

lim
x→−1−

2x

(x + 1)3
.

The numerator is approaching -2, which is negative. The
denominator is approaching zero which is neither posi-
tive nor negative, but since x → −1−, we know that
x < −1 and therefore x+ 1 < 0 and (x+ 1)3 < 0. Hence
the denominator is negative as x approaches -1 from the
left. Since a negative divided by a negative is positive,
we get:

lim
x→−1−

2x

(x + 1)3
=

neg

neg
=∞,

since the choices were only∞ and −∞. Now, we will do
a sign analysis on the right hand limit:

lim
x→−1+

2x

(x + 1)3
.
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The numerator is approaching -2, which is negative. In
the denominator, since x → −1+, we know that x >
−1 and therefore x + 1 > 0 and (x + 1)3 > 0. Hence
the denominator is positive as x approaches -1 from the
right. Since a negative divided by a positive is negative,
we get:

lim
x→−1+

2x

(x + 1)3
=

neg

pos
= −∞,

since the choices were only∞ and −∞. Near x = 2, the
graph looks like this:

−3 −2 −1 1

−1,000

1,000

2,000

The graph of y =
2x

(x + 1)3

AL 11. Plugging x = 0 into the rational function

f(x) =
1

x2

gives the undefined expression 1
0
. From this information,

we can conclude that the graph of the function has a
vertical asymptote at x = 0. This means that the one-
sided limits as x approaches 0 will give either∞ or −∞,
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i.e.,

lim
x→−1−

1

x2
=∞ or −∞.

and

lim
x→−1+

1

x2
=∞ or −∞.

To determine which, we will do a sign analysis as follows.
Because of the perfect square, we can consider both case
simultaneously. The numerator is 1, which is positive
and the denominator is x2 which is positive whether x→
0− or x→ 0+. Hence

lim
x→0−

1

x2
=

pos

pos
=∞,

and

lim
x→0+

1

x2
=

pos

pos
=∞,

since the choices were only ∞ and −∞. The graph of
f(x) = 1

x2 near x = 0 looks like this:
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AL 12. Compute the limit: lim
x→3−

|x− 3|
x− 3

.

Plugging in x = 3 gives the indeterminate form 0/0.
To resolve this limit, we will do a sign analysis on the
quantity in the absolute value bars, x− 3.

Since x→ 3−, we have x < 3 and hence x−3 < 0. Since
the quantity in the absolute value bars is negative, we
can compute its absolute value as follows:

|x− 3| = −(x− 3).

Using this in the limit, we get

lim
x→3−

|x− 3|
x− 3

= lim
x→3−

−(x− 3)

x− 3

= lim
x→3−

(−1)

= −1.

End Behavior

AL 13. Find limx→∞
1

x
. We argue as follows. If x is a very

large number, then 1/x will be a very small number, near
zero. Furthermore, as x increases, 1/x will decrease.

Hence

lim
x→∞

1

x
= 0.

The graph of the function f(x) = 1
x

also provides evi-
dence for this conclusion.
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Lastly, the value of the limit corresponds to the hori-
zontal asymptote of the graph, namely y = 0 in this
example.

An important generalization, which follws from a similar
analysis is

lim
x→±∞

a

xn
= 0

for any constant, a, and any positive exponent, n.

We will exploit this important fact in the next two ex-
amples.

AL 14. Compute lim
x→∞

3x2 + 5x + 2

2x2 − x− 4
.

First note that as x → ±∞, a polynomial, p(x) → ±∞
according to it leading term. In this example, since the
lead terms 3x2 and 2x2 both go to ∞ as x → ∞, our
limit has the indeterminate form ∞

∞ . To resolve this is-
sue, we will factor out of both the numerator and the
denominator the highest power of x seen in the denomi-
nator. So, in this example, we will factor x2 from both.
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In the numerator,

3x2 + 5x + 2 = x2(3 +
5

x
+

2

x2
)

and in the denominator,

2x2 − x− 4 = x2(2− 1

x
− 4

x2
).

With these factorizations, our limit becomes

lim
x→∞

3x2 + 5x + 2

2x2 − x− 4
= lim

x→∞

x2(3 + 5
x

+ 2
x2 )

x2(2− 1
x
− 4

x2 )

= lim
x→∞

3 + 5
x

+ 2
x2

2− 1
x
− 4

x2

=
3 + 0 + 0

2− 0− 0

=
3

2
.

The result of this limit means that the line y = 3/2 is a

horizontal asymptote for the graph of y =
3x2 + 5x + 2

2x2 − x− 4
on the right end.

AL 15. Compute lim
x→−∞

4x2 − 3x− 6

x3 + 8x2 − 3x + 7
.

First note that as x → ±∞, a polynomial, p(x) → ±∞
according to it leading term. In this example, the lead
terms 4x2 and x3 go to ∞ and −∞ respectively, as
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x → ∞. Hence, our limit has the indeterminate form
∞
−∞ . To resolve this issue, we will factor out of both the
numerator and the denominator the highest power of x
seen in the denominator. So, in this example, we will
factor x3 from both. In the numerator,

4x2 − 3x− 6 = x3(
4

x
− 3

x2
− 6

x3
)

and in the denominator,

x3 + 8x2 − 3x + 7 = x3(1 +
8

x
− 3

x2
+

7

x3
).

With these factorizations, our limit becomes

lim
x→−∞

4x2 − 3x− 6

x3 + 8x2 − 3x + 7
= lim

x→−∞

x3( 4
x
− 3

x2 − 6
x3 )

x3(1 + 8
x
− 3

x2 + 7
x3 )

= lim
x→−∞

4
x
− 3

x2 − 6
x3

1 + 8
x
− 3

x2 + 7
x3

=
0− 0− 0

1 + 0− 0 + 0

=
0

1
= 0.

The result of this limit means that the line y = 0 (the
x-axis) is a horizontal asymptote for the graph of y =

4x2 − 3x− 6

x3 + 8x2 − 3x + 7
on the right end.


