0.1 L'Hopital's Rule

L'Hopital's Rule uses the derivative to help us find limits involving indeterminate forms. The main indeterminate forms we will discuss are $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, 1^{\infty}$ and 0^{0} . We begin with the fractional forms.

L'Hopital's Rule

If
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\infty}{\infty}$ then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$ provided the latter exists.

In the above statement, $x \to c$ can be replaced by a one-sided limit and c can be $\pm \infty$. Also the fraction $\frac{\infty}{\infty}$ is shorthand for $\frac{\pm \infty}{\pm \infty}$.

The
$$\frac{0}{0}$$
 case

LR 1. Compute the limit: $\lim_{x\to 0} \frac{\sin(x)}{x}$.

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L'Hopital's rule applies.

We have

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1.$$

LR 2. Compute the limit: $\lim_{x\to 0} \frac{e^x - 1}{x}$.

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L'Hopital's rule applies.

We have

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1.$$

LR 3. Compute the limit: $\lim_{x\to 2} \frac{x^3-8}{x^5-32}$.

Plugging in the terminal value, x = 2, yields the indeterminate form 0/0, so L'Hopital's rule applies.

We have

$$\lim_{x \to 2} \frac{x^3 - 8}{x^5 - 32} = \lim_{x \to 2} \frac{3x^2}{5x^4} = \frac{12}{80} = \frac{3}{20}.$$

Sometimes we have to use L'Hopital's Rule more than once.

LR 4. Compute the limit: $\lim_{x\to 0} \frac{e^x - x - 1}{x^2}$.

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L'Hopital's rule applies. We have

$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{0}{0}.$$

Applying L'Hopital's Rule again gives

$$\lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{e^x}{2} = \frac{1}{2}.$$

Hence
$$\lim_{x\to 0} \frac{e^x - x - 1}{x^2} = \frac{1}{2}$$
.

LR 5. Compute the limit: $\lim_{x\to 0} \frac{\tan(x)-x}{x^3}$.

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L'Hopital's rule applies.

We have

$$\lim_{x \to 0} \frac{\tan(x) - x}{x^3} = \lim_{x \to 0} \frac{\sec^2(x) - 1}{3x^2} = \frac{0}{0}.$$

Applying L'Hopital's Rule again gives

$$\lim_{x \to 0} \frac{\sec^2(x) - 1}{3x^2} = \lim_{x \to 0} \frac{2\sec^2(x)\tan(x)}{6x} = \frac{0}{0}.$$

We need to apply L'Hopital's Rule again, but first, the numerator is complicated and

$$\lim_{x \to 0} \sec(x) = 1 \neq 0$$

so we take a simplifying step before applying the rule.

$$\lim_{x \to 0} \frac{2 \sec^2(x) \tan(x)}{6x} = \lim_{x \to 0} \sec^2(x) \cdot \lim_{x \to 0} \frac{2 \tan(x)}{6x}$$
$$= 1 \cdot \lim_{x \to 0} \frac{2 \sec^2(x)}{6} = \frac{2}{6} = \frac{1}{3}.$$

Hence $\lim_{x \to 0} \frac{\tan(x) - x}{x^3} = \frac{1}{3}.$

The
$$\frac{\infty}{\infty}$$
 case

These are handled the same way as the 0/0 case above.

LR 6. Compute the limit: $\lim_{x\to\infty} \frac{x^2}{e^x}$.

As x approaches ∞ we get the indeterminate form $\frac{\infty}{\infty}$ so L'Hopital's Rule applies. We have

$$\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \frac{\infty}{\infty}.$$

Applying L'hopital again, we get

$$\lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0.$$

Hence $\lim_{x\to\infty} \frac{x^2}{e^x} = 0$. This limit can be generalized as follows:

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0$$

for any exponent $n = 1, 2, 3, \ldots$

This general result comes from using L'Hopital's Rule n times, yielding

$$\lim_{x \to \infty} \frac{n!}{e^x} = 0$$

where $n! = n(n-1)(n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$.

The interpretation of this limit is that the exponential function e^x grows faster than any power of x as $x \to \infty$.

LR 7. Compute the limit: $\lim_{x\to\infty} \frac{\sqrt{x}}{\ln(x)}$.

As $x \to \infty$ we get ∞/∞ , so L'Hopital's Rule applies.

We have:

$$\lim_{x \to \infty} \frac{\sqrt{x}}{\ln(x)} = \lim_{x \to \infty} \frac{\left(\frac{1}{2\sqrt{x}}\right)}{\left(\frac{1}{x}\right)}$$

which simplifies to

$$\lim_{x \to \infty} \frac{x}{2\sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{x}}{2} = \infty.$$

Hence, $\lim_{x\to\infty} \frac{\sqrt{x}}{\ln(x)} = \infty$.

The interpretation of this limit is that \sqrt{x} goes to ∞ faster than $\ln(x)$ as $x \to \infty$.

Other indeterminate forms.

L'Hopital's Rule requires a fractional indeterminate form such as 0/0 or ∞/∞ , but we can use it to handle other indeterminate forms by rewriting the problem in the format of a fraction.

The
$$0 \cdot \infty$$
 case

LR 8. Compute the limit: $\lim_{x\to 0^+} x^2 \ln(x)$.

As $x \to 0^+$ we get $0 \cdot (-\infty)$ which is an indeterminate form, but L'Hopital's Rule does not apply in this situation. We must rewrite the problem as a fraction, in the following way:

$$\lim_{x \to 0^+} \frac{\ln(x)}{x^{-2}}.$$

Notice that this is equivalent to the original problem since

$$x^2 = \frac{1}{x^{-2}}.$$

Also note that $x^{-2} = \frac{1}{x^2} \to \infty$ as $x \to 0^+$.

Now, we can use L'Hopital's Rule because

$$\lim_{x \to 0+} \frac{\ln(x)}{x^{-2}} = \frac{-\infty}{\infty}.$$

We get

$$\lim_{x \to 0^+} \frac{\ln(x)}{x^{-2}} = \lim_{x \to \infty} \frac{1/x}{-2x^{-3}}$$

which simplifies to

$$\lim_{x \to 0^+} -\frac{x^2}{2} = 0.$$

$$\lim_{x \to \infty} \frac{\ln(x)}{x^{-2}} = 0.$$