0.1 L’Hopital’s Rule 1

0.1 L’Hopital’s Rule

L’Hopital’s Rule uses the derivative to help us find limits involving indeterminate forms.
The main indeterminate forms we will discuss are 2, 2.0 - 00,1 and 0°. We begin with

0’ 00’
the fractional forms.

L’Hopital’s Rule

/
If lim M = 0 or 2 then lim M = lim fz) provided the latter exists.
e g(x) 0 00 T—e g(z) e g’(x)

In the above statement, x — ¢ can be replaced by a one-sided limit and ¢ can be +o0.
Also the fraction 2 is shorthand for iﬁ

The g case

LR 1. Compute the limit: lim M
x—0 €T

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L’Hopital’s
rule applies.

We have

r—1
LR 2. Compute the limit: lim ¢ .
x—0 €T

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L’Hopital’s
rule applies.

We have
T _ ] T
lim —lm S =1
x—0 x z—0 1
LR 3. Compute the limit: lim >
. Ompu e e 11Mm1itu: xl_}n’% x5 — 32

Plugging in the terminal value, z = 2, yields the indeterminate form 0/0, so L’Hopital’s
rule applies.



We have

x3 —8 o322 12 3

lim =lim-—=—=—.
r—2 1‘5 — 32 x—2 5{)3'4 80 20

Sometimes we have to use L’Hopital’s Rule more than once.

v r1
LR 4. Compute the limit: lim S
z—0 2

Plugging in the terminal value, z = 0, yields the indeterminate form 0/0, so L’Hopital’s
rule applies. We have
e —x—1 .oet—1

) 0
lim ————— = lim = —.
x—0 3;'2 x—0 21‘ O

Applying L’Hopital’s Rule again gives

ef—1 e 1
lim =—=_.
z—=0 2x 2 2

T_p—1 1
Hence lim ————— = = -
x—0 1‘2 2

t —
LR 5. Compute the limit: lim M.
z—0 xT

Plugging in the terminal value, x = 0, yields the indeterminate form 0/0, so L’Hopital’s
rule applies.

We have
— 2 —
lim tan(z) — x iy €€ () —1 _ Q
z—0 X z—0 312 0
Applying L’Hopital’s Rule again gives
20, _ 2
i 5€C () —1 — lim 2sec?(z) tan(x) _ 9
z—0 3I2 z—0 6x 0

We need to apply L’Hopital’s Rule again, but first, the numerator is complicated and

glﬂlg(l)sec(x) =1#0

so we take a simplifying step before applying the rule.
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2sec?(x) t 2t
lim 22 (z) tan(x) = lim sec?(x) - lim 2tan(z)
z—0 6x z—0 =0 6z
2 sec? 2 1
g 2@ 2 1
z—0 6 6 3
— 1
Hence lim —tan(x) S
x—0 ,]j?’ 3

00
The — case
00

These are handled the same way as the 0/0 case above.
72
LR 6. Compute the limit: lim —.

z—00 et

As x approaches co we get the indeterminate form 22 so L'Hopital’s Rule applies.

We have
x? . 2z 0
Iim — = lim — = —
z—00 €T rz—o0 et o0
Applying L’hopital again, we get
2 2
lim 22 = lim = = 0.
z—o00 et —oo et

Hence lim,_, Z—j = 0. This limit can be generalized as follows:

for any exponent n =1,2,3,....

This general result comes from using L’Hopital’s Rule n times, yielding

where n!l =n(n —1)(n —2)----- 3:2-1.

The interpretation of this limit is that the exponential function e* grows faster than
any power of x as r — oo.

LR 7. Compute the limit: lim VT

Z—00 ln(x) '
As x — oo we get 0o/, so L'Hopital’s Rule applies.
We have:



which simplifies to

Hence, lim,_, % = 00.

The interpretation of this limit is that /= goes to oo faster than In(z) as z — oc.
Other indeterminate forms.

L’Hopital’s Rule requires a fractional indeterminate form such as 0/0 or co/oo, but
we can use it to handle other indeterminate forms by rewriting the problem in the
format of a fraction.

The 0 - co case

LR 8. Compute the limit: lim z*In(z).

z—0t

As x — 0" we get 0- (—o0) which is an indeterminate form, but L'Hopital’s Rule
does not apply in this situation. We must rewrite the problem as a fraction, in the
following way:

lim In(z) )
z—0+t 2

Notice that this is equivalent to the original problem since

1
2 _
=5
Also note that 272 = & — oo as ¢ — 0*.

Now, we can use L’Hopital’s Rule because

1 _
lim n(z) = —OO.
z—0+ 2 00
We get
| 1
lim n(z) = lim /@

which simplifies to
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Hence,

X
lim —— = 0.
:ci{(l)lJr 2
1
lim ) _

zoo0 L2



