0.1 Increasing and Decreasing Functions

In this section, we use the derivative to determine intervals on which a given function is increasing or decreasing. We can then also determine the location of local extremes of the function.

Definitions of Increasing and Decreasing

A function f(x) is called **increasing** on an interval I if given any two numbers, x_1 and x_2 in I such that $x_1 < x_2$, we have $f(x_1) < f(x_2)$.

Similarly, a function f(x) is called **decreasing** on an interval I if given any two numbers, x_1 and x_2 in I such that $x_1 < x_2$, we have $f(x_1) > f(x_2)$.

As an example of increasing, the function $f(x) = x^2$ is increasing on the interval $(0, \infty)$ since if $0 < x_1 < x_2$ then $(x_1)^2 < (x_2)^2$.

As an example of decreasing, the function x^2 is decreasing on the interval $(-\infty, 0)$ since if $x_1 < x_2 < 0$ then $(x_1)^2 > (x_2)^2$.

To help see this, make a rough sketch of the function $y = x^2$.

To help us determine where more complicated functions are either increasing or decreasing, we have the following theorem.

Increasing/Decreasing Theorem

If f'(x) > 0 on an interval I, then f(x) is increasing on the interval I. If f'(x) < 0 on an interval I, then f(x) is decreasing on the interval I.

Proof (Increasing case): Let x_1 and x_2 be in the interval I with $x_1 < x_2$. Then since f is differentiable on the closed

interval $[x_1, x_2]$, it is also continuous there. Hence we can apply the MVT on to f(x) on $[x_1, x_2]$ and conclude that

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Both factors on the right hand side are positive, hence $f(x_2) - f(x_1)$ is positive and $f(x_2) > f(x_1)$. Hence $x_1 < x_2$ implies $f(x_1) < f(x_2)$ which means that f(x) is increasing on I.

We now use this theorem to determine intervals on which a given function is either increasing or decreasing.

ID 1 Determine intervals on which $f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 2$ is increasing and decreasing. According to the theorem, we must determine where f'(x) is either positive or negative. To do this, it is often easiest to first determine where f'(x) = 0 or f'(x) is undefined. In this example,

$$f'(x) = x^2 - x - 6$$

which exists for all x. We solve the equation

$$f'(x) = x^2 - x - 6 = 0$$

which yields

$$(x+2)(x-3) = 0$$

and hence, x=-2 or x=3. These two x-values break the real number line into three open intervals: $(-\infty,-2),(-2,3)$ and $(3,\infty)$. On each of these intervals, f' will be either strictly positive or strictly negative. To determine which, we will use test points. For the interval, $(-\infty,-2)$ consider $f'(-3)=(-3)^2-(-3)-6=6>0$. This means that f'(x)>0 for every x value in the interval $(-\infty,-2)$ and by the theorem, f(x) is increasing on this interval.

Next, for the interval (-2,3), consider $f'(0) = (0)^2 - (0) - 6 = -6 < 0$. This means that f'(x) < 0 for every x value in the interval (-2,3) and by the theorem, f(x) is decreasing on this interval.

Finally, for the interval $(3, \infty)$, consider $f'(4) = (4)^2 - (4) - 6 = 10 > 0$. This means that f'(x) > 0 for every x value in the interval $(3, \infty)$ and by the theorem, f(x) is increasing on this interval.

The work that was done in the previous example can actually give us slightly more information about f(x). We can determine the **local extremes** of f(x).

Definition: We say that f(x) has a **local maximum** at $x = x_0$ if there is an open interval I containing x_0 such that $f(x) \le f(x_0)$ for all values of x in I. Similarly, we say that f(x) has a **local minimum** at $x = x_0$ if there is an open interval I containing x_0 such that $f(x) \ge f(x_0)$ for all values of x in I.

First Derivative Test for Local Extremes: If f'(x) changes sign at a critical number x_0 , then f(x) has a local extreme at $x = x_0$. More specifically, if the sign changes from positive to negative then the local extreme is a max and if the sign changes from negative to positive, then the local extreme is a min.

ID 2 In the previous example, we determined that -2 and 3 were critical numbers for the function $f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 2$ and that f(x) was increasing on the interval $(-\infty, -2)$, decreasing on (-2, 3) and increasing on $(3, \infty)$. By the First Derivative Test, we can conclude that f(x) has a local maximum at x = -2 and a local minimum at x = 3.

ID 3 $f(x) = xe^{-2x}$.