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0.1 The Derivative

Given a function y = f(z), the derivative, f’'(z) is a formula for the slope of the tangent line.
Conceptually, the derivative represents the instantaneous rate of change of the function.
Other notations for the derivative include 3" and %.

To begin the discussion, we recall the formula for the slope of a line between two points,
(1, 51) and (22, y2):
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To find the slope of the tangent line to the graph of y = f(x) at the point (x, f(z)), we
first compute the slope of the secant line connecting the point (z, f(x)) with the nearby
point (z + h, f(xz + h)):

This quantity is frequently referred to as the difference quotient.



To find the slope of the tangent line, we need to move the point (z+ h, f(x + h)) closer
and closer to the point (x, f(x)) without ever reaching it. This requires the use of a limit.
To make x + h approach x we must make h approach 0.

This gives us the definition of the derivative:
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Let’s compute the derivative of 22 and interpret some of its values. Using the formula
for f'(x), we have
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Thus the derivative of 22 is 2z and this tells use the slope of the tangent line at a given
x-value. For example, if x = —3, then the derivative is f’(—3) = 2(—3) = —6. This means
that the slope of the tangent line at the point (—3,9) is —6. At the point (0,0), the slope
of the tangent line is f'(0) = 2(0) = 0, and at the point (2,4) the slope is f'(2) = 2(2) = 4.
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We now compute the derivative of several different functions.

Examples Using the Definition of the Derivative

DD 1. Let f(z) = 2> — 5z + 7. To find f'(x) using the definition of derivative, we will
need to compute f(x + h). To do this, we substitute the expression (z + h) into the
formula for f(z) in the place of z. In this example, we get,

flx+h)=(@+h)?*=5x+h)+7
=22+ 2ch+h?> —5x —b5h+ 7.



Now we use the definition:
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=2x — 5.

To recap, the derivative of 22 — 5z + 7 is 2z — 5.

DD 2. If f(x) = 23 then in order to find f’(z) we first compute f(x + h).
We have
flx+h)=(z+h)?
= (z+h)(z+h)?
= (x + h)(2® 4 2zh + h?)
= 2% + 22°h + xh® + 2®h + 22h® + h?
= 2”4 32*h + 3zh® + h’.

Now we use the definition:

flz+h) = f(x)

fw) = lim h
_ lim (23 + 32%h + 3zh® + h?) — 2*
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_ lim 3z2h + 3zh® + h3
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~ im h(3z* + 3zh + h?)
h—0 h

= lim (32 + 3zh + h?)
h—0

= 322

To recap, the derivative of 23 is 322
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DD 3. If f(z) = y/z then
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To recap, the derivative of \/x is NG
x

DD 4. If f(z) = v/2z + 1 then

flx+h)=+2(x+h)+1
=V2zx+2h+1.



Now for the derivative:
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To recap, the derivative of v/2x + 1 is ——.
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DD 5. If f(z) = - then
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To recap, the derivative of — is ——.
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flz+h) - f(x)
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To recap, the derivative of is — 2

r+3 (x+3)?

The next two examples use the special limits:

lim % =0 and Jim sinth) _ .
DD 7. If f(z) = sin(x) then
f(2) = lim flz+h)— f(z)

h—0 h

sin(z + h) — sin(z)

= lim

~ im sin(x) cos(h) 4 cos(z) sin(h) — sin(x)
h—0 h

— tim sin(x)(cos(h) — 1) + cos(z) sin(h)
h—0 h

.. sin(z)(cos(h) — 1)  cos(z)sin(h)

N ilzli% h + h

= sin(z) - 0 4 cos(z) - 1

= cos(z).



To recap, the derivative of sin(z) is cos(z).

DD 8. If f(z) = cos(x) then

flx+h) = f(x)

7o) =y 1

— im cos(x + h) — cos(x)
h—0 h

~ im cos(x) cos(h) — sin(z) sin(h) — cos(x)
h—0 h
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= cos(z) - 0 —sin(z) - 1

= —sin(z).

To recap, the derivative of cos(z) is — sin(z).

The next example uses the special limit

e =1
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DD 9. If f(z) = e” then
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To recap, the derivative of e* is e”.

The next example uses the special limit

In(1
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DD 10. If f(z) = In(x) then
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Note that we made the substitution k& = % so that h = kx and also note that h — 0

1
is equivalent to k — 0. To recap, the derivative of In(x) is —.
x



