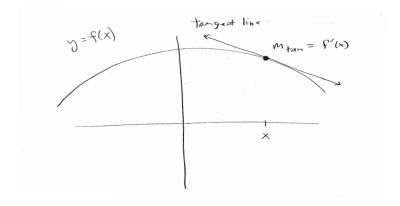
0.1 The Derivative

Given a function y = f(x), the derivative, f'(x) is a formula for the slope of the tangent line. Conceptually, the derivative represents the instantaneous rate of change of the function. Other notations for the derivative include y' and $\frac{dy}{dx}$.



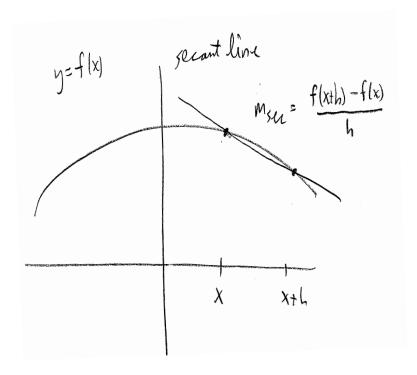
To begin the discussion, we recall the formula for the slope of a line between two points, (x_1, y_1) and (x_2, y_2) :

$$m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

To find the slope of the tangent line to the graph of y = f(x) at the point (x, f(x)), we first compute the slope of the secant line connecting the point (x, f(x)) with the nearby point (x + h, f(x + h)):

$$m_{\text{Sec}} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}.$$

This quantity is frequently referred to as the **difference quotient**.



To find the slope of the tangent line, we need to move the point (x + h, f(x + h)) closer and closer to the point (x, f(x)) without ever reaching it. This requires the use of a limit. To make x + h approach x we must make h approach 0.

This gives us the **definition of the derivative**:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Let's compute the derivative of x^2 and interpret some of its values. Using the formula for f'(x), we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) - x^2}{h}$$

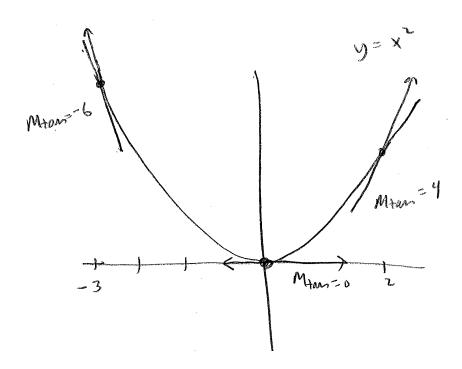
$$= \lim_{h \to 0} \frac{(2xh + h^2)}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} (2x+h)$$

$$= 2x.$$

Thus the derivative of x^2 is 2x and this tells use the slope of the tangent line at a given x-value. For example, if x = -3, then the derivative is f'(-3) = 2(-3) = -6. This means that the slope of the tangent line at the point (-3, 9) is -6. At the point (0, 0), the slope of the tangent line is f'(0) = 2(0) = 0, and at the point (2, 4) the slope is f'(2) = 2(2) = 4.



We now compute the derivative of several different functions.

Examples Using the Definition of the Derivative

DD 1. Let $f(x) = x^2 - 5x + 7$. To find f'(x) using the definition of derivative, we will need to compute f(x+h). To do this, we substitute the expression (x+h) into the formula for f(x) in the place of x. In this example, we get,

$$f(x+h) = (x+h)^2 - 5(x+h) + 7$$

= $x^2 + 2xh + h^2 - 5x - 5h + 7$.

Now we use the definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2 - 5x - 5h + 7) - (x^2 - 5x + 7)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 - 5h}{h}$$

$$= \lim_{h \to 0} \frac{h(2x + h - 5)}{h}$$

$$= \lim_{h \to 0} (2x + h - 5)$$

$$= 2x - 5.$$

To recap, the derivative of $x^2 - 5x + 7$ is 2x - 5.

DD 2. If $f(x) = x^3$ then in order to find f'(x) we first compute f(x+h).

We have

$$f(x+h) = (x+h)^3$$

$$= (x+h)(x+h)^2$$

$$= (x+h)(x^2+2xh+h^2)$$

$$= x^3 + 2x^2h + xh^2 + x^2h + 2xh^2 + h^3$$

$$= x^3 + 3x^2h + 3xh^2 + h^3.$$

Now we use the definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - x^3}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$$

$$= 3x^2.$$

To recap, the derivative of x^3 is $3x^2$.

DD 3. If $f(x) = \sqrt{x}$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \lim_{h \to 0} \frac{(x+h) - (x)}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}}.$$

To recap, the derivative of \sqrt{x} is $\frac{1}{2\sqrt{x}}$.

DD 4. If $f(x) = \sqrt{2x+1}$ then

$$f(x+h) = \sqrt{2(x+h) + 1} = \sqrt{2x + 2h + 1}.$$

Now for the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{2x+2h+1} - \sqrt{2x+1}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{2x+2h+1} - \sqrt{2x+1}}{h} \cdot \frac{\sqrt{2x+2h+1} + \sqrt{2x+1}}{\sqrt{2x+2h+1} + \sqrt{2x+1}}$$

$$= \lim_{h \to 0} \frac{(2x+2h+1) - (2x+1)}{h(\sqrt{2x+2h+1} + \sqrt{2x+1})}$$

$$= \lim_{h \to 0} \frac{2h}{h\sqrt{2x+2h+1} + \sqrt{2x+1}}$$

$$= \lim_{h \to 0} \frac{2}{\sqrt{2x+2h+1} + \sqrt{2x+1}}$$

$$= \frac{2}{\sqrt{2x+1} + \sqrt{2x+1}}$$

$$= \frac{2}{2\sqrt{2x+1}}$$

$$= \frac{1}{\sqrt{2x+1}}.$$

To recap, the derivative of $\sqrt{2x+1}$ is $\frac{1}{\sqrt{2x+1}}$.

DD 5. If $f(x) = \frac{1}{x}$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{(x) - (x+h)}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{-h}{x(x+h)} \cdot \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{-1}{x(x+h)}$$

$$= -\frac{1}{x^2}.$$

To recap, the derivative of $\frac{1}{x}$ is $-\frac{1}{x^2}$.

DD 6. If $f(x) = \frac{2}{x+3}$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2}{x+h+3} - \frac{2}{x+3}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2(x+3) - 2(x+h+3)}{h}}{\frac{(x+h+3)(x+3)}{h}}$$

$$= \lim_{h \to 0} \frac{\frac{2x+6 - 2x - 2h - 6}{(x+h+3)(x+3)}}{h}$$

$$= \lim_{h \to 0} \frac{-2h}{(x+h+3)(x+3)} \cdot \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{-2}{(x+h+3)(x+3)}$$

$$= -\frac{2}{(x+3)^2}.$$

To recap, the derivative of $\frac{2}{x+3}$ is $-\frac{2}{(x+3)^2}$.

The next two examples use the special limits:

$$\lim_{h\to 0}\frac{\cos(h)-1}{h}=0\quad \text{and}\quad \lim_{h\to 0}\frac{\sin(h)}{h}=1.$$

DD 7. If $f(x) = \sin(x)$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) (\cos(h) - 1) + \cos(x) \sin(h)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) (\cos(h) - 1)}{h} + \frac{\cos(x) \sin(h)}{h}$$

$$= \sin(x) \cdot 0 + \cos(x) \cdot 1$$

$$= \cos(x).$$

To recap, the derivative of sin(x) is cos(x).

DD 8. If $f(x) = \cos(x)$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)[\cos(h) - 1] - \sin(x)\sin(h)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)[\cos(h) - 1]}{h} - \frac{\sin(x)\sin(h)}{h}$$

$$= \cos(x) \cdot 0 - \sin(x) \cdot 1$$

$$= -\sin(x).$$

To recap, the derivative of cos(x) is -sin(x).

The next example uses the special limit

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

DD 9. If $f(x) = e^x$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x e^h - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x (e^h - 1)}{h}$$

$$= e^x \cdot 1 = e^x.$$

To recap, the derivative of e^x is e^x .

The next example uses the special limit

$$\lim_{k \to 0} \frac{\ln(1+k)}{k} = 1.$$

DD 10. If $f(x) = \ln(x)$ then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h}$$

$$= \lim_{h \to 0} \frac{\ln(\frac{x+h}{x})}{h}$$

$$= \lim_{h \to 0} \frac{\ln(1 + \frac{h}{x})}{h}$$

$$= \lim_{k \to 0} \frac{\ln(1 + k)}{kx}$$

$$= \frac{1}{x}.$$

Note that we made the substitution $k = \frac{h}{x}$ so that h = kx and also note that $h \to 0$ is equivalent to $k \to 0$. To recap, the derivative of $\ln(x)$ is $\frac{1}{x}$.