A. Fill in the blanks in the statements below (so that the resulting statement is true). Assume the functions are continuous and differentiable.

(a) If f' is positive on an interval, then f is **increasing** on the interval.
(b) If f is concave up on an interval, then f'' is **positive** on the interval.
(c) If f is decreasing on an interval, then f' is **negative** on the interval.
(d) If f has a local maximum at $x = 1$, then $f'(1) = 0$.
(e) If f has an inflection point at $x = 3$, then $f'' = 0$.
(f) If f' is decreasing on an interval, then f is **concave downward** on the interval.
(g) If f' has a local maximum at $x = 5$, then f has an **inflection point** at $x = 5$.
(h) If $f'(4) = 0$ and $f''(4) > 0$, then f has a **local minimum** at $x = 4$.