The role of fungi in carbon and nitrogen cycles in freshwater ecosystems

VLADISLAV GULIS, KEVIN KUEHN
AND KELLER SUBERKROPP

Introduction

Fungi are adapted to a diverse array of freshwater ecosystems. In streams and rivers, flowing water provides a mechanism for downstream dispersal of fungal propagules. The dominant group of fungi in these habitats, aquatic hyphomycetes, have conidia that are morphologically adapted (tetraradiate and sigmoid) for attachment to their substrates (leaf litter and woody debris from riparian vegetation) in flowing water (Webster, 1959; Webster & Davey, 1984). In freshwater wetlands and lake littoral zones, production of emergent aquatic macrophytes is often extremely high, resulting in an abundance of plant material that eventually enters the detrital pool. The dead shoot material of these macrophytes (leaf blades, leaf sheaths and culms) often remains standing for long periods of time before collapsing to the sediments or water. This plant matter is colonized by fungi that are adapted for surviving the harsh conditions that prevail in the standing-dead environment (Kuehn et al., 1998). There are a number of other freshwater ecosystems where fungi are present and exhibit interesting adaptations, e.g. aero-aquatic fungi in woodland ponds, zoosporic organisms (Chytridiomycota and Oomycota) in a variety of habitats including the pelagic zones of lakes, and Trichomycetes that inhabit the guts of a variety of aquatic insects. Despite the well-known occurrence of these fungal groups in aquatic habitats, virtually nothing is known concerning their roles in biogeochemical processes. Overall, the contributions of fungi to biogeochemical cycles have been understudied in most freshwater ecosystems.

Most studies examining fungal participation in biogeochemical cycles in freshwater ecosystems focused on the role of fungi in the decomposition of plant litter. Historically, the lack of appropriate methods to accurately quantify

fungal biomass and rates of biomass production was a major reason for the paucity of knowledge concerning the role of fungi in litter decomposition (Gessner et al., 1997). However, a growing body of evidence has emerged over the last two decades on the usefulness of the fungal sterol, ergosterol, in the quantification of fungal biomass within decaying plant litter and the technique for measuring in situ instantaneous growth rates of fungi from rates of $[^{14}C]$acetate incorporation into ergosterol (Gessner & Newell, 2002 and references therein). Both of these methodological developments are increasingly used today. This has been particularly useful in allowing quantitative assessment of the magnitude of fungal contributions to the cycling of carbon and the flow of energy in freshwater ecosystems. Results of these studies have indicated that fungi are significant decomposers of particulate detritus and play key roles in detrital food webs of freshwater ecosystems.

During plant litter decomposition, fungi are involved in a variety of processes that result in the conversion of plant carbon into fungal biomass and also into CO$_2$ as a result of their respiratory activities (Gessner et al., 1997). In addition, fungal decomposition of plant litter, as well as feeding activities of detritivore consumers (invertebrates) on this microbially colonized plant litter facilitates in the export of plant carbon as either fine particulate organic matter (FPOM) or dissolved organic matter (DOM). This chapter will examine the role of fungi in carbon and nitrogen cycles during plant litter decomposition in two freshwater ecosystems, streams and wetlands. The use of quantitative methods has led to a greater appreciation of the impact of these organisms on biogeochemical processes within both of these ecosystems.

Freshwater streams

Riparian vegetation shades woodland streams and limits the magnitude of primary production occurring within these ecosystems. This vegetation also contributes the bulk of organic matter inputs to the stream, primarily in the form of leaves and woody debris. Woodland streams have been shown to receive up to 99% of their organic carbon from the riparian vegetation (Fisher & Likens, 1972; Webster & Meyer, 1997). Since woodland streams are dependent on leaf litter as a major source of carbon and energy, considerable attention has focused on the decomposition of this detritus and its links to higher trophic levels (Webster & Benfield, 1986; Suberkropp, 1998b).

Carbon cycle

In temperate streams, leaf resources enter as a pulse during autumn leaf fall (Fig. 17.1a) as temperatures are declining. Once leaf litter enters a stream, it is rapidly colonized by aquatic fungi and bacteria.
Aquatic hyphomycetes are ubiquitous in streams and concentrations of their conidia in the water typically reach annual maxima shortly after peaks of leaf inputs in the autumn (Fig. 17.1b, Iqbal & Webster, 1973; Bärlocher, 2000; Gulis & Suberkropp, 2004). As aquatic hyphomycete hyphae penetrate and grow in leaf litter, they secrete an array of extracellular enzymes (e.g. cellulases, xylanases, pectinases) that digest leaf litter.

Fig. 17.1. Leaf litter standing crop as ash free dry mass (AFDM) per unit of stream bottom area (a), conidia concentration of aquatic hyphomycetes in water (b) and fungal biomass associated with leaves as dry mass (DM) per unit of stream bottom area (c) in a headwater southern Appalachian stream. Data from Suberkropp (1997). Symbols indicate means ±1 SE (n = 3–10).
polysaccharides, thereby allowing organic carbon to be assimilated by fungi (Suberkropp et al., 1983; Chamier, 1985; Shearer, 1992). Fungal growth and enzymatic digestion also cause softening or maceration of leaf tissue (Suberkropp & Klug, 1980; Chamier & Dixon, 1982), contributing to the production and release of fine particulate organic carbon in streams.

Fungal biomass During the decomposition of leaves, fungal biomass typically increases to a maximum and then stabilizes or declines as conidia are released and hyphae senesce (Gessner & Chauvet, 1994). Fungal biomass can account for as much as 18%–23% of the total mass of detritus (Gessner & Chauvet, 1994; Methvin & Suberkropp, 2003). Fungal biomass associated with leaf detritus expressed on an areal basis reaches annual maximum values after leaf litter enters a stream and becomes colonized (Fig. 17.1c). Maximum fungal biomass of up to 27 g m$^{-2}$ of stream bed has been found associated with naturally occurring leaves (Suberkropp, unpublished results). Fungal biomass associated with decaying leaves enclosed in litter bags typically reaches values that are one to two orders of magnitude greater than bacterial biomass found on the same leaves (Table 17.1). Likewise, microbial biomass inhabiting naturally occurring leaves in streams is also dominated by fungi (Table 17.1)

Table 17.1. *Fungal and bacterial biomass associated with decomposing leaves in streams.* All values are maximum biomass estimates from litter bag decomposition studies except the study by Findlay et al. (2002b) where average microbial biomass from randomly collected leaves was estimated

<table>
<thead>
<tr>
<th>Leaf species</th>
<th>Biomass as percent of detritus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platanus hybrida</td>
<td>4.8</td>
<td>Baldy et al. (1995)</td>
</tr>
<tr>
<td>Populus nigra</td>
<td>9.9</td>
<td>Baldy et al. (1995)</td>
</tr>
<tr>
<td>Salix alba</td>
<td>7.8</td>
<td>Baldy et al. (1995)</td>
</tr>
<tr>
<td>Populus nigra</td>
<td>8.0</td>
<td>Baldy et al. (2002)</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>7.7</td>
<td>Hieber & Gessner (2002)</td>
</tr>
<tr>
<td>Salix fragilis</td>
<td>7.0</td>
<td>Hieber & Gessner (2002)</td>
</tr>
<tr>
<td>Acer rubrum</td>
<td>17.4</td>
<td>Gulis & Suberkropp (2003c)</td>
</tr>
<tr>
<td>Rhododendron maximum</td>
<td>10.8</td>
<td>Gulis & Suberkropp (2003c)</td>
</tr>
<tr>
<td>Leaf detritus from 9 streams</td>
<td>1.5</td>
<td>Findlay et al. (2002b)</td>
</tr>
</tbody>
</table>
Factors such as chemical characteristics of the leaf species (Gessner & Chauvet, 1994) and concentrations of nutrients (N and P) in the water (Grattan & Suberkropp, 2001; Niyogi et al., 2003) can affect the amount of fungal biomass associated with leaves as they decompose. The strong correlation between exponential decay rates of different leaf species and measures of fungal biomass and activity (e.g. maximum ergosterol concentrations, net mycelial production and sporulation rates of aquatic hyphomycetes) indicate that fungi play a key role in regulating the decomposition of leaves (Gessner & Chauvet, 1994). Significant correlations of ergosterol concentrations with mass loss of wood veneers (Fig. 17.2) and decay rates of grass leaves (Niyogi et al., 2003) suggest that this conclusion holds true for various types of plant detritus decomposing in streams.

After colonization and growth, one major fate of fungal biomass includes the production of conidia that are carried downstream. Conidia may provide an inoculum for leaves entering the stream, may be captured by filter-feeding invertebrates or may undergo decomposition by bacteria. Fungal biomass within leaf litter also serves as an important food resource for detritivores that consume leaf detritus. Microbially colonized detritus
is a more palatable and nutritious food source than dead leaves for invertebrate detritivores (Bärlocher, 1985; Suberkropp, 1992). Microbial growth and enzymatic decay of leaf polymers increases the nutritional quality of leaf detritus since microbial biomass is more digestible for detritivore consumers than recalcitrant leaf tissue (i.e. lignocellulose). In addition, microbial enzymes can partially degrade leaf polymers making them more digestible and microbial enzymes may remain active in the digestive tract of some detritivores (Bärlocher, 1985). Since the biomass of fungi associated with leaf detritus is much higher than that of bacteria, fungal biomass should provide a larger portion of the nutrition in the diets of invertebrate detritivores than bacterial biomass. Consequently, fungi occupy a central position in the trophic structure of stream food webs and mediate the cycling of carbon and flow of energy to higher trophic levels. However, fungal species that decompose leaf litter cannot be placed in a single black box within the carbon cycle, since species are not identical in their food quality for detritivore consumers. Fungal species are known to differ in their overall palatability (Bärlocher & Kendrick, 1973a; Suberkropp et al., 1983) and nutritional value (Bärlocher & Kendrick, 1973b; Arsuffi & Suberkropp, 1986, Graça et al., 1993) for these animals.

Fungal production Recently, production of fungi associated with decomposing plant material has been estimated by determining rates of incorporation of radiolabelled acetate into ergosterol. This method, introduced by Newell and Fallon (1991) for fungi decomposing Spartina litter in salt marshes, has been applied to the fungi decomposing leaves in freshwater streams (Suberkropp & Weyers, 1996; Gessner & Chauvet, 1997). Determination of fungal production allows estimation of the rate at which carbon from decomposing plant litter is converted into fungal biomass. This technique is particularly useful when losses in fungal biomass from leaf detritus are occurring (e.g. to sporulation, detritivore consumption, hyphal senescence and death) and biomass accumulation does not give a good indication of total fungal production.

Fungal production is typically higher than bacterial production associated with decomposing leaves. For example, maximum fungal production associated with decomposing Liriodendron tulipifera leaves was 7 mg g\(^{-1}\) d\(^{-1}\) compared to 0.3 mg g\(^{-1}\) d\(^{-1}\) for maximum bacterial production (Weyers & Suberkropp, 1996). Similarly, fungal production associated with Populus nigra leaves in a large river reached maximum values of 1.3–1.4 mg g\(^{-1}\) d\(^{-1}\) whereas bacterial production achieved a maximum
of 0.4 mg g\(^{-1}\) d\(^{-1}\) (Baldy et al., 2002). Only when green, non-senescent Alnus glutinosa leaves were placed in a stream during the summer were bacterial rates of production (1.2 mg g\(^{-1}\) d\(^{-1}\)) slightly higher than those of fungi (1 mg g\(^{-1}\) d\(^{-1}\)) even though fungal biomass still accounted for 95%–99% of the total microbial biomass (Baldy & Gessner, 1997).

Although annual fungal production associated with naturally occurring leaves has only been estimated in a limited number of streams, it exhibits a wide range (Table 17.2). The amount of leaf litter present throughout an annual cycle appears to be an important factor controlling fungal production in a stream as annual fungal production is significantly correlated with the annual mean leaf standing crop (Fig. 17.3). The mean standing crop of leaf detritus is a function of both the input of leaf litter and the retentiveness of the stream. Most of the streams that have been examined exhibit relatively low retention of leaf litter, since winter storms (January to February) generally wash the bulk of autumn leaf litter from the stream (Suberkropp, 1997; Methvin & Suberkropp, 2003; Carter & Suberkropp, 2004). However, in streams that retain leaf detritus very efficiently (e.g. Coweeta 53, Table 17.2), the mean standing crop of leaf detritus is high and annual fungal production on areal basis is correspondingly high. Typically most fungal production per m\(^2\) occurs in the autumn and winter when the greatest amount of leaf detritus is present in the stream even though temperatures are at annual minima (Suberkropp, 1997; Methvin & Suberkropp, 2003). During the summer, when temperatures are higher, there is generally little leaf detritus remaining in streams. This may account for the relatively long turnover times calculated for fungi based on annual production to biomass ratios (18–44 days, Table 17.2).

Rates of fungal production can be used to estimate the fraction of leaf detritus that is assimilated by fungi (for mycelial biomass, sporulation, respiration). Net production efficiencies (production/production + respiration) determined for two aquatic hyphomycete species growing on leaf litter in microcosms ranged from 24% to 46% (Suberkropp, 1991). A third species exhibited production efficiencies of 32% and 60% depending on the nutrient concentrations in the water, and production efficiencies tended to decrease when bacteria were present (Gulis & Suberkropp, 2003b). Using the lowest and highest values together with estimates of leaf litter inputs to the streams, the percentage of leaf input to streams that is assimilated by fungi can be calculated (Table 17.2). In most cases the percentage of leaf inputs assimilated by fungi is significant. For streams in which leaf detritus is washed out by January–February (the first five streams in Table 17.2), fungi are estimated to assimilate only 5%–40%
Table 17.2. *Annual production, production to biomass (P/B) ratios and turnover times of fungi with annual leaf litter inputs and the percentage of the leaf input that was assimilated by fungi in different streams*

<table>
<thead>
<tr>
<th>Stream</th>
<th>Annual fungal production (g m(^{-2}))</th>
<th>Annual P/B</th>
<th>Turnover time (d)</th>
<th>Annual leaf input (g m(^{-2}))</th>
<th>% of leaf input assimilated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payne Creek</td>
<td>16 ± 6</td>
<td>11.5</td>
<td>32</td>
<td>492 ± 19</td>
<td>5–14</td>
<td>Carter & Suberkropp (2004)</td>
</tr>
<tr>
<td>Walker Branch</td>
<td>37 ± 8</td>
<td>8.2</td>
<td>44</td>
<td>460 (estimate)</td>
<td>13–33</td>
<td>Suberkropp (1997)</td>
</tr>
<tr>
<td>Coweeta 53</td>
<td>193 ± 54</td>
<td>15.6</td>
<td>23</td>
<td>617–826</td>
<td>39–97</td>
<td>Suberkropp et al. (unpublished)</td>
</tr>
</tbody>
</table>
of leaf litter inputs. In contrast, in streams that retain leaf detritus more efficiently (e.g. Coweeta 53), fungi may assimilate as much as 39% to 97% of leaf litter inputs.

Respiration In studies examining leaf decomposition using litter bags or leaf packs, 17%–56% of the carbon loss from leaves has been found to be released as CO₂ by the microbial assemblages (Elwood et al., 1981; Baldy & Gessner, 1997; Gulis & Suberkropp, 2003c). Both the whole-stream nutrient enrichment with nitrogen and/or phosphorus (Gulis & Suberkropp, 2003c; Ramirez et al., 2003) and microcosm nutrient additions (Gulis & Suberkropp, 2003a, b) caused significant increases in the amount of leaf carbon lost through microbial respiration in comparison with detritus decomposing at ambient nutrient levels. In microcosms, fungi have been found to convert similar amounts of organic carbon into CO₂ to that observed for leaves colonized in streams, i.e. 14%–48% of the leaf carbon that is lost (Suberkropp, 1991; Gulis & Suberkropp, 2003b). Lower estimates have been reported for naturally decomposing leaves in two Alabama streams (Carter & Suberkropp 2004) where respiration by

Fig. 17.3. Correlation between mean annual leaf litter standing stock and mean annual fungal production in streams. Based on data from Suberkropp (1997), Methvin and Suberkropp (2003), Carter and Suberkropp (2004) and Suberkropp et al. (unpublished).
microbial communities accounted for 7%–13% of the leaf litter input. However, both of these streams were not retentive and most of the leaf litter was thought to have been washed downstream before it decomposed.

Microbial respiration also accounts for a considerable mass loss of decomposing wood in streams (7%–44%, Collier & Smith, 2003). Respiration rates reported from submerged wood are generally lower than those from leaf litter if calculated per unit of mass (or volume) of detritus (Tank et al., 1993; Fuss & Smock, 1996) because of lower surface to volume ratio of sticks versus leaves and fungal activity restricted mostly to the outer layers of wood. However, if expressed on a surface area basis, respiration rates from submerged wood are higher than those from leaves (Tank et al., 1993; Fuss & Smock, 1996). Respiration rates from submerged decomposing thin wood veneers are comparable to those from leaf litter (Simon & Benfield, 2001; Stelzer et al., 2003) and together with relatively high fungal biomass estimates (Simon & Benfield, 2001; Stelzer et al., 2003; Gulis et al., 2004) suggest that fungi are important players in the decomposition of submerged wood.

Nitrogen cycle

Fungi have lower C/N ratios than the substrates they colonize; consequently they should either retain substrate nitrogen more efficiently than carbon or acquire nitrogen from exogenous sources. Aquatic fungi are capable of utilizing nitrogen from both organic substrates and the overlying water (Suberkropp, 1995). These fungi are often nitrogen (and phosphorus) limited due to relatively low nitrogen concentrations of submerged substrates (leaf litter and especially wood) and also of water. The relative importance of each nitrogen source depends on organic substrate qualities and water chemistry.

Nitrogen in water Concentrations of dissolved inorganic nutrients (e.g. N and P) vary dramatically across aquatic ecosystems and, along with other factors, determine the level of fungal activity. The concentration of dissolved inorganic nitrogen in stream water (ammonium, nitrite and nitrate) depends on watershed characteristics, such as bedrock and soil chemical properties, land use, stream hydrology and biotic activity. Nitrate predominates in well-oxygenated waters while ammonium (and nitrite) concentrations can be high in anoxic waters, often as a result of human activities. Most aquatic hyphomycetes (and presumably ascomycetes) can use both organic and inorganic nitrogen (Thornton, 1963, 1965), while some chytrids and oomycetes are unable to utilize nitrate. Ammonium can be
assimilated directly while all other nitrogen sources should be first transformed into ammonium either with nitrate and nitrite reductases or through deamination.

There is a wealth of evidence that aquatic fungi obtain substantial amounts of their nitrogen from the water column. Fungal biomass accrual and sporulation of aquatic hyphomycetes are stimulated by dissolved nitrogen in both laboratory (Suberkropp, 1998a; Sridhar & Bärlocher, 2000; Bärlocher & Corkum, 2003) and field experiments (Fig. 17.4; Suberkropp & Chauvet, 1995; Tank & Dodds, 2003). Leaf litter nitrate uptake rates are correlated with decomposition rates, leaf toughness and respiration (Quinn et al., 2000), which are functions of microbial activity. Increases in absolute nitrogen content of leaf litter have been reported in many studies (Hynes & Kaushik, 1969; Kaushik & Hynes, 1971; Suberkropp et al., 1976; Triska & Sedell, 1976; Chauvet, 1987; Molinero et al., 1996), suggesting that nitrogen is actively taken up from the water column by litter-inhabiting micro-organisms. Selective antibiotic experiments (Kaushik & Hynes, 1971) and laboratory studies with pure cultures growing on submerged wood (Gunasekera et al., 1983) indicate that fungi are responsible for the majority of this uptake. Enrichment of stream water

![Figure 17.4](image-url)
with \[^{15}\text{N}]\text{ammonium}\) and subsequent comparison of \(^{15}\text{N}\) values for bulk detritus and microbial nitrogen associated with decaying leaves and wood indicate microbial nitrogen immobilization (Mulholland et al., 2000; Tank et al., 2000; Sanzone et al., 2001). Since fungi contribute 95\% to over 99\% of total microbial (fungi plus bacteria) biomass associated with decomposing leaf litter in streams (Baldy et al., 1995; Hieber & Gessner, 2002; Gulis & Suberkropp, 2003c) it is likely that fungi, not bacteria, are largely responsible for the observed nitrogen immobilization.

On an ecosystem scale, Qualls (1984) estimated that 25\% of dissolved inorganic nitrogen inflow can be immobilized by leaf litter in a blackwater swamp stream within a 1 km reach. Hamilton et al. (2001) found that 29\% of stream water ammonium was taken up by heterotrophs associated with organic detritus. Estimates of the actively cycling fraction of nitrogen in leaves and small wood during \(^{15}\text{N}\) enrichments are almost identical to the measured microbial nitrogen fraction (Tank et al., 2000; Hamilton et al., 2001). Because of fungal dominance on coarse particulate organic matter in streams, these nitrogen transformations were likely to have been controlled by fungal activities.

Ample supply of nitrogen from stream water often leads to increases in microbial respiration (Stelzer et al., 2003) and leaf litter decomposition (Fig. 17.5; Suberkropp & Chauvet, 1995; Huryn et al., 2002) that generally correlates with measures of fungal activity (Fig. 17.2, Gessner & Chauvet, 1994; Niyogi et al., 2003). This stimulation of microbial carbon utilization demonstrates a tight coupling of carbon and nitrogen cycles in freshwater ecosystems. Consequently, eutrophication due to human activity may alter both nitrogen and carbon cycling within these habitats.

Nitrogen in organic substrates Initial nitrogen content was first suggested to affect microbially mediated leaf litter decomposition in water (Kaushik & Hynes, 1971). Among leaves of common riparian trees, alder leaves have a high nitrogen concentration because of nitrogen fixation by tree symbionts, decompose quickly and typically support high fungal biomass and conidia production of aquatic hyphomycetes soon after submergence (Gessner & Chauvet, 1994). However, it is apparent that leaf breakdown is also affected by fibre content, chemical inhibitors (phenolics) and physical barriers (Webster & Benfield, 1986). Gessner and Chauvet (1994) found that leaf litter decomposition rate, maximum fungal biomass, mycelial production and sporulation rate of aquatic hyphomycetes were negatively correlated with leaf litter initial lignin content but were not affected by nitrogen concentration. It appears that breakdown and fungal activity
depend on complex interplay of factors, e.g. lignin/nitrogen ratio as suggested by Melillo et al. (1982) for leaf litter and also external factors such as stream water nutrient concentrations (Gessner & Suberkropp, unpublished). A similar relationship was suggested for wood decomposing in streams (Melillo et al., 1983). Decomposition rate of wood was also linked to the activity of enzymes involved in nutrient sequestration (Sinsabaugh et al., 1993), which depends on nitrogen and phosphorus availability.

The nitrogen concentrations of autumn-shed leaves of deciduous trees vary between 0.5%–3% averaging around 1% (e.g. Gessner & Chauvet, 1994; Ostrofsky, 1997) while the nitrogen content of fungal mycelium is about 3%–10% (e.g. Paul & Clark, 1989; Högberg & Högberg, 2002). Since fungi can contribute up to 18%–23% of total detrital mass of submerged decaying leaves (Suberkropp, 1995; Methvin & Suberkropp, 2003), it is not surprising that leaf litter nitrogen concentration typically increases during decomposition and frequently doubles (e.g. Kaushik & Hynes, 1971; Suberkropp et al., 1976). Increases in leaf litter nitrogen

Fig. 17.5. Decomposition rates of alder leaf litter in streams differed in nitrate concentration in water. Both linear and Michaelis–Menten model $V = (V_{\text{max}} [S])/(K_m + [S])$, where (here) V_{max} is the maximum decomposition rate, K_m is the nitrate concentration at which half rate of decomposition is achieved, [S] is nitrate concentration, gave fairly good fit (Gulis, Ferreira & Graça, unpublished).
content correlate well with fungal biomass accrual (Fig. 17.6). Rier et al. (2002) reported that fungal biomass was negatively correlated with detrital C/N ratio (i.e. inverse of %N) in a study comparing decomposition of leaf litter grown under ambient and CO₂-enriched atmosphere and hence having different initial C/N ratios. Increases in nitrogen content during decomposition in streams also occur in wood (Sinsabaugh et al., 1993; Gulis et al., 2004). Overall, nitrogen increases are thought to coincide with increases in protein concentration due to fungal growth, thereby rendering plant litter a more palatable and nutritious food source for invertebrates (Kaushik & Hynes, 1971; Bärlocher, 1985; Suberkropp, 1992) and facilitating transfer of nutrients to higher trophic levels.

Dissimilatory nitrogen transformations Nitrification and denitrification are important processes of the global nitrogen cycle. Traditionally, bacteria are thought to be responsible for these transformations (including in aquatic ecosystems; Allan, 1995). However, nitrification has been reported for a wide range of terrestrial fungi (e.g. Falih & Wainwright, 1995) and fungi were confirmed to be capable of denitrification, reducing nitrate or nitrite to nitrous oxide or ultimately N₂ (e.g. Shoun et al., 1992). Furthermore, fungi were found to dominate both microbial nitrification
and denitrification in soil (Laughlin & Stevens, 2002). The potential for nitrification or denitrification has not been demonstrated specifically in aquatic fungi, but it is reasonable to expect that some species may be capable of denitrification, especially since it has been reported for *Fusarium*, *Cylindrocarpon* and *Nectria* (Hypocreales, Ascomycota) (Shoun et al., 1992) and these genera are commonly found in aquatic environments. Low oxygen concentrations in benthic sediments are a prerequisite for denitrification by aquatic fungi. Recently, Guest and Smith (2002) proposed using fungi for biological nitrogen reduction of wastewater, because of their greater denitrification rate and other advantages over bacteria.

Stoichiometric perspective Even though carbon and nitrogen cycles in aquatic ecosystems are coupled, different stoichiometric ratios of water, detritus and consumers lead to different incorporation ratios of carbon and nitrogen (Frost et al., 2002). Initial atomic C/N ratios were estimated to be around 20–96 for leaves entering aquatic ecosystems (calculated from %N in Melillo et al. (1982) and Gessner & Chauvet (1994); assumed carbon content of 50%) and 140–1100 for wood (Melillo et al., 1984; Stelzer et al., 2003). Carbon/nitrogen ratios have been estimated at 4.5–22 for terrestrial fungi (Paul & Clark, 1989; Högberg & Höberg, 2002; Wallander et al., 2003, 2004) and 8–13 for stream fungi associated with leaf litter in two temperate streams (Sanzone et al., 2001). Despite a certain plasticity of C/N ratios in microbes, considerable disparity between the elemental composition of the substrate and fungal mycelium would be likely to affect the growth rate of fungi. Thus, substrates with similar elemental composition to fungal biomass (i.e. lower C/N ratio or higher %N, see above) would support higher fungal activity. Elemental imbalance between the substrate and fungi can also be compensated by nitrogen uptake from the water column. Consequently, it is not surprising that the response of fungi (biomass, respiration and hence decomposition rate) to experimental nitrogen and phosphorus whole-stream enrichments was much higher for wood having an extremely high C/N ratio rather than for leaf litter (Stelzer et al., 2003; Gulis et al., 2004).

Spiralling In stream ecology, nutrient cycling is best described through the nutrient spiralling concept (Newbold et al., 1981) that takes into account the unidirectional downstream movement of water in streams and rivers. It implies that an atom (e.g. nitrogen) is transported some distance downstream in an inorganic form before being incorporated into biota (which can also be transported downstream) and eventually released in inorganic
form. With respect to aquatic fungi, nitrogen assimilated at a given stream location can be transported downstream as mycelia growing within a substrate or as fungal propagules where fungal nitrogen can be transferred to higher trophic levels through invertebrate feeding, remain within the fungal compartment through mycelial growth or released as inorganic nitrogen. Notably, aquatic hyphomycetes can convert up to 80% of fungal production (or 8%–12% of leaf mass loss) into conidia (Suberkropp, 1991) that are transported downstream. Aquatic hyphomycetes also contribute to maceration of leaf litter (Suberkropp & Klug, 1980) and generation of dissolved and fine particulate organic matter and, consequently, facilitate in the transport of nutrients downstream. On the other hand, fungal growth on high C/N substrates and nitrogen immobilization from the overlying water column may affect dissolved nitrogen uptake length and nitrogen recycling.

Freshwater Wetlands

Wetlands have been described as among the most biologically diverse and productive ecosystems on earth. These ecosystems represent a unique transition between the terrestrial and aquatic environment, have extensive food webs and provide a variety of habitats for a wide diversity of flora and fauna (Mitsch & Gosselink, 2000). A distinguishing feature of many freshwater wetlands and lake littoral zones is the presence of emergent vascular plants, such as *Phragmites*, *Typha* and *Juncus*. These plants frequently constitute a major fraction of the organic matter produced in wetlands, with estimates of annual net above-ground primary production often exceeding 2 kg m\(^{-2}\) yr\(^{-1}\) (Wetzel & Howe, 1999; Mitsch & Gosselink, 2000).

Very little of the living plant biomass is consumed by herbivores during the growing season (Dvorák & Imhof, 1998), since much of the carbon within macrophyte tissues resides in the structural material of cell walls (i.e. lignocellulose), which is not readily digested and assimilated by animal consumers (Mann, 1988; Kreeger & Newell, 2000). As a consequence, most of the plant matter produced eventually enters the detrital pool following plant senescence and death, where it is transformed by microbial decomposers (bacteria and fungi) and detritivore consumers (invertebrates). Microbial assemblages, particularly fungi, associated with decaying wetland plant litter are recognized as an important food source for detritus feeding consumers (Newell & Bárlocher, 1993; Bárlocher & Newell, 1994; Graça et al., 2000; Newell & Porter, 2000; Silliman & Newell, 2003), thereby serving as important intermediaries in the flow of both carbon and nutrients.
to higher trophic levels. Similar to the stream systems described above, many characteristics related to nutrient cycling and energy flow in wetland ecosystems are regulated by the metabolic activities of microbial assemblages associated with this decaying plant matter.

Despite the overwhelming importance of plant detritus in wetlands, plant decomposition and the role of associated micro-organisms, particularly fungi, is a seldom appreciated or investigated component of wetland processes (Newell, 1993). Previous studies of emergent plant decomposition in wetlands have often focused on litter that had been prematurely harvested and placed at or buried within the surface sediments (e.g. Moran et al., 1989; Thormann et al., 2001). As a result, litter decomposition was thought to be (1) primarily restricted to the sediment–water interface and (2) predominantly mediated by sediment-associated bacterial assemblages (Moran et al., 1988). However, in many emergent macrophytes the collapse of above-ground plant matter and incorporation of litter into the sediments does not typically occur following senescence and death of the plant shoot (Newell, 1993). Much of the dead plant litter remains attached to the parent plant in an aerial standing-dead position for extended periods of time, where it undergoes initial microbial decay prior to its entry into the aquatic environment (Newell, 1993; Newell et al., 1995; Bärlocher & Biddiscombe, 1996; Kuehn & Suberkropp, 1998a; Kuehn et al., 1999; Gessner, 2001; Findlay et al., 2002a; Welsch & Yavitt, 2003).

Fungi extensively colonize and reproduce on and within standing and submerged litter of emergent macrophytes. For example, over 600 species of fungi have now been recorded from Phragmites australis (e.g. Gessner & van Ryckegem, 2002). However, despite the wealth of qualitative evidence showing extensive fungal colonization, few investigators have attempted to quantify the role of fungi in litter decay in freshwater wetlands (Findlay et al., 1990, 2002a; Newell et al., 1995; Kuehn & Suberkropp, 1998a; Kuehn et al., 1999, 2000; Gessner, 2001; Newell, 2003; Welsch & Yavitt, 2003) or their overall contribution to total ecosystem metabolism (Kuehn & Suberkropp, 1998b; Kuehn et al., 2004).

Carbon cycle

Fungal biomass and production Recent studies conducted in subtropical and temperate freshwater wetlands provide compelling evidence that fungal participation in the aerial standing-dead litter phase can contribute significantly to overall carbon and nutrient cycling in wetlands (Kuehn & Suberkropp, 1998a, b; Kuehn et al., 1999). Kuehn and Suberkropp (1998a)
reported that living biomass of fungi associated with standing leaf litter of the rush, *Juncus effusus*, accounts for c. 5% of the total detrital mass. Once established, a relatively constant level of living fungal biomass was maintained for over 800 days and over 30 species of fungi were identified from standing *J. effusus* litter. Seasonal estimates of above-ground detrital mass of *J. effusus* at the wetland study site (Wetzel & Howe, 1999) ranged from 0.6 to 2.3 kg AFDM m$^{-2}$ (Fig. 17.7a). When integrated on an areal basis, fungal biomass associated with standing *J. effusus* litter ranged from 24 to 116 g m$^{-2}$ (Fig. 17.7b) emphasizing the quantitative significance of fungal decomposers in this ecosystem. Likewise, when viewed on a whole ecosystem scale, mean annual living fungal biomass within this relatively small wetland (15 ha, *J. effusus* 64.8% coverage) equals 2–11 tons.

Fig. 17.7. Seasonal estimates of standing-dead litter of *J. effusus* (a) and litter-associated fungal biomass (b) at the Talladega Wetland Ecosystem, Alabama. Data from Wetzel and Howe (1999) and Kuehn and Suberkropp (1998a). Vertical lines indicate +1 SE (n = 6).
In addition to accumulating large quantities of biomass in decaying standing litter, fungal decomposers also exhibit high rates of biomass production. Newell et al. (1995) reported that microbial biomass and production associated with naturally standing and fallen litter of the freshwater sedge, Carex walteriana, were dominated by fungal decomposers, with bacterial biomass and production often accounting for less than 0.5% that of fungi. Rates of fungal biomass production associated with standing-dead litter of J. effusus accounted for >94% of the total microbial production, averaging 42 µg C g⁻¹ AFDM h⁻¹ (Kuehn et al., 2000). Microbial biomass and rates of biomass production were also dominated by fungi (>99% of the total microbial production) in both standing and submerged litter of Typha angustifolia and P. australis in a tidal freshwater wetland of the Hudson River (Findlay et al., 2002a).

The collapse of emergent plant litter into the water often leads to fungal succession and distinct changes in the biomass and activity of associated fungi. Kuehn et al. (2000) reported that fungal and bacterial biomass and production decrease rapidly following submergence of J. effusus litter, suggesting that the resident microbiota associated with decaying standing litter could not adapt to or survive the abrupt changes in conditions from an aerial to an aquatic environment. The initial decline is typically followed by an increase in fungal biomass and production during later stages of submerged decomposition. Similar changes in the activities of microbial assemblages were observed following submergence of standing-dead P. australis litter in a temperate lake littoral wetland (Kominková et al., 2000).

After submergence of J. effusus litter and decreases in litter-associated microbial biomass, fungal decomposers continued to comprise the major microbial assemblage on/within decaying litter (Kuehn et al., 2000). Estimates of fungal biomass and production greatly exceeded corresponding estimates of bacterial biomass and production throughout submerged litter decay. The comparison of the contribution of fungi and bacteria to carbon loss of J. effusus litter under submerged conditions (Table 17.3) indicates that fungi could explain a substantial portion (68%) of the litter mass loss observed. Similar findings of fungal dominance in other freshwater wetlands (Findlay et al., 1990, 2002a; Newell et al., 1995; Sinsabaugh & Findlay, 1995) suggest that fungi are an important microbial assemblage involved in submerged macrophyte decay. These findings contrast sharply with previous studies that have reported a more predominant role of bacteria in wetland carbon cycling (Benner et al., 1986; Moran et al., 1988; Buesing, 2002).
Fungi associated with standing and submerged plant litter convert a considerable portion of the plant carbon into CO₂ as a result of their respiration. The microbiota, particularly fungi, associated with standing-dead wetland plant litter are well adapted to the fluctuating environmental conditions of the aerial habitat (Kuehn & Suberkropp, 1998b; Kuehn et al., 1998, 1999; Kuehn et al., 2004). Rates of microbial respiration (CO₂ evolution) from standing-dead litter exhibit pronounced diel periodicity (Fig. 17.8) and are positively correlated with night-time increases in plant litter water potentials (Kuehn & Suberkropp, 1998b; Kuehn et al., 2004). Temperature-driven increases in relative humidity and subsequent dew formation is the primary mechanism underlying night-time increases in water availability and microbial activities within standing-dead litter. In contrast, respiratory activities virtually cease during the day as a result of increased desiccation stress.

Large differences can occur among plant litter types (species and organ) in terms of microbial colonization and metabolic response of microorganisms to water availability. Microbial respiration rates associated with different *P. australis* litter fractions vary considerably (Kuehn et al., 2004). Maximum respiration rates from leaf blades were higher (24%–42%) than those from sheath litter under the same conditions (Fig. 17.8a) while maximum respiration rates from culm litter were consistently an order of magnitude lower than rates from both leaf and sheath litter. The observed differences in rates of respiration among *P. australis* litter fractions were consistent with differences in litter water absorption patterns, known structural characteristics among litter fractions (e.g. lignocellulose) and degree of fungal colonization (Fig. 17.9, Kuehn et al., 2004). Microbial respiration correlates well with litter-associated fungal biomass (ergosterol) (Fig. 17.9), providing convincing evidence that ergosterol is a good indicator of living

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fungi</th>
<th>Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total net production (mg C g⁻¹ initial leaf C)</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>Mean biomass (mg C g⁻¹ initial leaf C)</td>
<td>16</td>
<td>0.2</td>
</tr>
<tr>
<td>P/B ratio</td>
<td>2.8</td>
<td>15</td>
</tr>
<tr>
<td>Turnover (d)</td>
<td>68</td>
<td>13</td>
</tr>
<tr>
<td>% of initial leaf C assimilated</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>% contribution to overall leaf C loss</td>
<td>68</td>
<td>11</td>
</tr>
</tbody>
</table>

Respiration Fungi associated with standing and submerged plant litter convert a considerable portion of the plant carbon into CO₂ as a result of their respiration. The microbiota, particularly fungi, associated with standing-dead wetland plant litter are well adapted to the fluctuating environmental conditions of the aerial habitat (Kuehn & Suberkropp, 1998b; Kuehn et al., 1998, 1999; Kuehn et al., 2004). Rates of microbial respiration (CO₂ evolution) from standing-dead litter exhibit pronounced diel periodicity (Fig. 17.8) and are positively correlated with night-time increases in plant litter water potentials (Kuehn & Suberkropp, 1998b; Kuehn et al., 2004). Temperature-driven increases in relative humidity and subsequent dew formation is the primary mechanism underlying night-time increases in water availability and microbial activities within standing-dead litter. In contrast, respiratory activities virtually cease during the day as a result of increased desiccation stress.

Large differences can occur among plant litter types (species and organ) in terms of microbial colonization and metabolic response of microorganisms to water availability. Microbial respiration rates associated with different *P. australis* litter fractions vary considerably (Kuehn et al., 2004). Maximum respiration rates from leaf blades were higher (24%–42%) than those from sheath litter under the same conditions (Fig. 17.8a) while maximum respiration rates from culm litter were consistently an order of magnitude lower than rates from both leaf and sheath litter. The observed differences in rates of respiration among *P. australis* litter fractions were consistent with differences in litter water absorption patterns, known structural characteristics among litter fractions (e.g. lignocellulose) and degree of fungal colonization (Fig. 17.9, Kuehn et al., 2004). Microbial respiration correlates well with litter-associated fungal biomass (ergosterol) (Fig. 17.9), providing convincing evidence that ergosterol is a good indicator of living
fungal mass (but see Mille-Lindblom et al., 2004) and that fungi are likely to be responsible for most of the respiratory carbon release from standing litter in wetland habitats.

A rough budget also suggests that a considerable portion of plant carbon is likely to be converted into CO$_2$ under standing-dead conditions (Table 17.4). Only a small portion of the CO$_2$ flux from standing litter is due to wetting via precipitation, with most being accounted for by recurring night-time dew formation. In contrast to *P. australis* leaf and sheath litter, very little culm material is degraded under standing-dead conditions, perhaps because culms of *Phragmites* contain more recalcitrant and water-repellent tissues (Rodewald-Rudescu, 1974) and have low concentrations of fungal biomass. Hence, culm material appears to undergo more extensive microbial decay once shoots have collapsed to the sediments or water.

Fig. 17.8. Diel changes in (a) rates of CO$_2$ evolution from standing-dead leaf and sheath litter of *P. australis* and (b) plant litter water potential during field studies conducted in a littoral reed stand of Lake Hallwil, Switzerland. Data from Kuehn et al. (2004). Symbols indicate means ±1 SE (n = 3).
How common is the diel pattern in fungal respiration and what are the potential implications for wetland carbon cycling on an ecosystem scale? Remarkably similar diel patterns in respiration have been reported from standing-dead *J. effusus* litter in Alabama, USA (Kuehn & Suberkropp, 1998b) and *P. australis* litter from a temperate littoral reed stand in Switzerland (Kuehn et al., 2004), indicating that this phenomenon is not restricted to subtropical regions, but is common even at northern latitudes where most wetlands occur on a global scale. When integrated on an areal and temporal basis, diel fluctuations in microbial respiration rates are a potentially significant source of CO₂ from wetlands and may represent a pathway of carbon flow that has gone largely unnoticed in prior chamber-based estimates and models of total wetland CO₂ flux (Yavitt, 1997; Updegraff et al., 2001; Chimner et al., 2002; Larmola et al., 2003). Kuehn and Suberkropp (1998b) estimated daily fluxes of 1.37 to 3.35 g C m⁻² d⁻¹ from microbial (fungal) assemblages inhabiting standing *J. effusus*, which were equal to or exceeded sediment CO₂ flux rates from the same wetland site (0.12 to 2.43 g C m⁻² d⁻¹; Roden & Wetzel, 1996). Carbon dioxide flux rates reported for microbial assemblages inhabiting standing *P. australis* litter (Kuehn et al., 2004) were lower

Fig. 17.9. The effect of litter-associated fungal biomass on the mean maximum rate of CO₂ evolution from standing-dead *P. australis* leaf litter. Data from Kuehn et al. (2004).
Table 17.4. Estimate of the annual above-ground production of *J. effusus* and *P. australis* that is lost as CO₂ due to microbial, primarily fungal, respiration while in the standing-dead litter phase. Modified from Kuehn et al. (2004). Data for *J. effusus* were taken from Kuehn and Suberkropp (1998b).

<table>
<thead>
<tr>
<th>Site</th>
<th>Plant</th>
<th>Plant organ</th>
<th>Plant production (g C m⁻² yr⁻¹)</th>
<th>Microbial respiration (g C m⁻² yr⁻¹)</th>
<th>Lost due to microbial respiration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talladega, Alabama</td>
<td>J. effusus</td>
<td>Leaves</td>
<td>2086*</td>
<td>579</td>
<td>27.7</td>
</tr>
<tr>
<td>Neuchatel, Switzerland</td>
<td>P. australis</td>
<td>Leaves</td>
<td>272</td>
<td>23</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheaths</td>
<td>191</td>
<td>57</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culms</td>
<td>631</td>
<td>13</td>
<td>2.0</td>
</tr>
<tr>
<td>Hallwil, Switzerland</td>
<td>P. australis</td>
<td>Leaves</td>
<td>193</td>
<td>15</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheaths</td>
<td>88</td>
<td>25</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culms</td>
<td>308</td>
<td>11</td>
<td>3.6</td>
</tr>
</tbody>
</table>

*Estimates of standing-dead biomass for *J. effusus* were taken from Wetzel and Howe (1999).
(0.05–0.57 g C m$^{-2}$ d$^{-1}$) but still within the range of CO$_2$ flux estimates reported for wetland sediments in northern temperate climates (e.g. Scanlon & Moore, 2000).

Under submerged conditions, rates of microbial respiration associated with macrophyte litter are similar to maximum rates reported above for standing-dead litter under water-saturating conditions. Komínková et al. (2000) reported respiration rates from submerged *P. australis* leaves ranging from 29 to 127 μg CO$_2$-C g$^{-1}$ AFDM h$^{-1}$, with fluctuations in rates following changes in lake water temperature. In addition, as observed in standing litter, significant differences in fungal biomass and rates of respiration were also noted between *P. australis* leaf and culm litter, with submerged culm litter having considerably lower fungal biomass and rates of respiration than corresponding leaf litter. These comparisons with respiration rates from standing litter reveal that microbial respiration associated with submerged emergent macrophyte litter can also be a sizeable contribution. A partial decomposition budget of submerged *P. australis* leaves (Komínková et al., 2000), indicated that c. 65% of detrital carbon loss could be accounted for by microbial respiration. It is likely that a sizeable portion of this respiratory carbon loss was due to the metabolic activities of fungal decomposers, since total litter-associated microbial biomass was predominantly fungal (>90%).

Nitrogen cycle

Research examining the quantitative contribution of microorganisms to total detrital nitrogen pools in freshwater wetlands is limited. Previous studies have suggested that litter-inhabiting microbial assemblages (bacteria and fungi) account for only a minor fraction of the total nitrogen content in decaying plant matter (Mann, 1988). However, these conclusions were often based on methods that underestimated microbial biomass within decaying plant litter, particularly fungal. Studies by Newell (1993 and references therein), using improved methods for estimating fungal biomass (i.e. immunoassay and ergosterol), were among the first to recognize that fungi could account for a substantial portion of the total plant litter nitrogen. Fungal assemblages (mainly ascomycetes) associated with standing-dead litter of the saltmarsh cordgrass, *Spartina alterniflora*, immobilized nearly all (99%) of the available litter nitrogen (assuming 4% N in fungal biomass, see Newell & Statzell-Tallman, 1982). Similar studies in freshwater wetlands reveal that fungal contributions to total detrital nitrogen can also be significant (Newell et al., 1995; Kuehn & Suberkropp, 1998a; Kuehn
et al., 2000; Findlay et al., 2002a); however, estimates are considerably lower than those obtained from saltmarsh systems.

Newell et al. (1995) reported that living fungal biomass accounted for 6%–35% of the total nitrogen in decaying standing and fallen litter of the freshwater sedge C. walteriana. Similar findings were reported for standing and submerged litter of J. effusus (Kuehn & Suberkropp, 1998a; Kuehn et al., 2000), T. angustifolia and P. australis (Findlay et al., 2002a), with fungal nitrogen accounting for as much as 40% of the total litter nitrogen content. However, note that in these studies, fungal contribution to total detrital nitrogen reflected only estimates of nitrogen within living fungal biomass and thus may be an underestimate. Residual non-living fungal biomass within decaying litter (e.g. N-acetylglucosamine) may account for a substantial portion of the total detrital nitrogen. Total fungal biomass (living plus dead hyphae) may be two-fold greater than living fungal biomass alone (Newell & Porter, 2000).

Conclusions
In freshwater ecosystems where fungi have been studied, particularly in plant litter decomposition subsystems, they have been found to play key roles both in the cycling of carbon and nitrogen and in mediating energy flow to higher trophic levels. Fungi undoubtedly have a number of other roles in these ecosystems, as pathogens, symbionts and decomposers of other types of organic matter. As methods are developed, adapted and applied to other subsystems of aquatic ecosystems and particularly when fungal activities become amenable to quantification, the roles played by fungi in aquatic ecosystems will become better understood.

Acknowledgements
Financial support of our research on aquatic fungal ecology from the US National Science Foundation and through the EU 5th Framework Programme, project ‘RivFunction’ is gratefully acknowledged.

References

Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. *Mycological Research*, 102, 998–1002.

Production, standing biomass and natural abundance of N-15 and C-13 in ectomycorrhizal mycelia collected at different soil depths in two forest types. *Oecologia*, 139, 89–97.

