Change of Variables : 
		 
		1. Evaluate \(\displaystyle{ \iint_R (x-3y)  \, dA} \), where 
		\(R\) is the triangular region with vertices \( (0, 0)\), \( (2, 1)\) 
		and \( (1, 2)\). Use \(x = 2u+v, \, y=u+2v \).  
		solution
		 
		2. Evaluate \(\displaystyle{ \iint_E x^2 \, dA} \), where \(E\) is the 
		region bounded by the ellipse \(9x^2+4y^2=36\). Use \(x = 2u, \, y=3v 
		\).  solution
		 
		 3. Use the Change of Variables Theorem to compute the following double 
		integral using the given substitutions where \( R\) is the parallelogram 
		in the \(xy\)-plane with vertices \((-1,3)\), \( (1,-3)\), \((3,-1)\), 
		and \((1,5)\).  solution
\[ \iint_R (4x+8y)\, dA, \: \: x=\frac{1}{4}(u+v), 
		\quad \, y=\frac{1}{4}(v-3u)\]  
		4. Evaluate  \(\displaystyle{ \iint_R (4x^2-y^2)^2 \, dA} \) by 
		appropriate change of variables where \(R\) is the region bounded by the 
		lines \(x=0, \: y=2x \), and  \(y=2-2x\).   
		solution
		 
		 5. Evaluate \(\displaystyle{ \iint_R e^{x+y} \, dA} \) by the following 
		transformation \(y-x=u, \: x+y=v\), where \(R\) is the region bounded by 
		the lines: \(y=x, \, y=-x+2, \, y=x+2\), and \(y=-x\).  solution
		 
		6. Evaluate  \(\displaystyle{ \iint_T \cos\left( 
		\frac{3(y-x)}{y+x} \right) \, dA} \) by appropriate change of variables 
		where \(T\) is the trapezoidal region with vertices \( (2,0)\), \( (5, 
		0)\), \( (0, 5)\) and \( (0, 2)\).  
		solution 
		 
		7. Evaluate \(\displaystyle{ \iint_R (x-y) \, dy\, dx} \), where \(R\) is the parallelogram joining the points (1,2), (3,4), (4,3), and (6,5) by making appropriate change of variables. solution
		 
		8. (not in Final) Evaluate the integral using the given change of variables \( 
		\displaystyle{\iint_R (x^2-xy+y^2)\, dA} \) where \(R\) is the region 
		bounded by the ellipse \( x^2-xy+y^2=2; \: x=\sqrt{2}\, u -\sqrt{2/3}\, 
		v, \: y=\sqrt{2}\, u +\sqrt{2/3} \, v\).  
		solution