Fundamental Theorem of Calculus
		
		
	-  Find the derivative, \(g'(x) \), of each of the following functions. solution
(a) \( \displaystyle g(x) =\int_2^x (5t-\ln t + 7) \,  dt \)     (b) \( \displaystyle  g(x) =\int_x^4 \frac{\tan t}{1+t^2} \,  dt \)     (c) \( \displaystyle  g(x) =\int_5^x \sqrt{1-t+2t^2} \,  dt \)
-  Find the derivative \( g'(x)\) of the function.   solution 
(a)  \(\displaystyle{ g(x)=\int_1^x \sqrt{3t^2+t^4} \, dt }\)   (b)   \(\displaystyle{ g(x)=\int_x^2 \frac{5-\sin t }{\cos t +2t}\, dt }\)     (c)   \( \displaystyle{g(x)=\int_1^{2x} (2-5t+7t^2 ) \, dt} \)   
(d)  \( \displaystyle{g(x)=\int_{e^x}^{0} 5 \cos^3(t) \, dt} \)
	
		
-  Consider the following graph of \(y=f(t)\) for the following 
(a)-(e).  solution
 
 
Evaluate (a) \(\displaystyle{\int_0^3 f(t)\, dt}\)   (b) \(\displaystyle{\int_3^7 f(t)\, dt}\)   (c) \(\displaystyle{\int_6^8 f(t)\, dt}\)  (d)\(\displaystyle{\int_0^8 f(t)\,dt}\)
(e) Let  \( \displaystyle{g(x)=\int_0^x f(t) \, dt}, \) where \(f\) is the function whose graph is shown above.    (i) What is \(g(2)\)?     (ii) At what value of \(x\) does \(g(x)\) have a local maximum?    (iii) On what intervals is \(g(x)\) increasing? Explain.   
	
- Consider the following graph \(y=f(t)\). Let \( \displaystyle{g(x)=\int_0^x f(t) \, dt} \)  and   \( \displaystyle{h(x)=\int_{-2}^x f'(t) \, dt} \)   for \(x \geq -3\). (a) Find the critical numbers of \(g(x)\) on the interval \(0 \leq x \leq 8\). Justify your answer. 
  (b) Evaluate  \(h(6), \, h'(6)\) and \(h''(6)\).   solution

	
		
-  Evaluate each integral.   solution
 (a) \(\displaystyle{ \int (1 + 2x + e^x) \, dx}\)    (b) \(\displaystyle{\int \frac{x-1}{\sqrt x} \, dx}\)    (c) \(\displaystyle{ \int (x^7-5x^2+2x-3) \, dx }\)   (d) \(\displaystyle{\int \frac{1+x+x^2}{x} dx}\) 
	
	
	
	
	Evaluate the following definite integrals.
	-  (a) \(\displaystyle{ \int_0^1  (1+x^9+x^{99})\: dx}\)    (b) \(\displaystyle{ \int_0^2  (3x^2-1)\: dx}\)   (c) \(\displaystyle{ \int_1^8 \sqrt[3]{x}\: dx}\)   solution
- (a) \(\displaystyle{\int_{\ln 2}^{\ln 7}  e^{x} \:dx}\)   (b) \(\displaystyle{ \int_0^{\ln 5} (e^x-1) \: dx}\)    (c) \(\displaystyle{ \int_{-1}^0 (2x-e^x+1) \: dx} \)    solution
 
-  (a) \(\displaystyle{ \int_{\pi/4}^{\pi} \, \sin (\theta)\, d\theta}\)         (b) \(\displaystyle{ \int_0^{\pi/4}\, 8 \sec^2 (\theta) \, d\theta}\)       (c) \(\displaystyle{ \int_{\pi/6}^{\pi/3}\, 8 \csc (t) \cot (t) \, dt}\)   solution
	
- (a) \(\displaystyle{ \int_0^2  (3x^2-1) \, dx}\)    (b) \(\displaystyle{ \int_{-1}^0 (2x-e^x+1) \, dx} \)    (c) \(\displaystyle{ \int_0^{\pi/4}\frac{1+\cos^2\theta}{\cos^2\theta}  \, d\theta} \)   solution 
	
 
-  (a) \(\displaystyle{ \int_0^1 \frac{2}{1+ t^2} \,  dt}\)               (b) \(\displaystyle{ \int_0^9 \sqrt{2x} \, dx} \)      solution
	-  (a) \( \displaystyle{\int_ 1^{64} \frac{1+\sqrt[3]x}{\sqrt{x}} \, dx }\)                 (b) \(\displaystyle{ \int_1^9 \frac{x-1}{\sqrt{x}}  \, dx}\)       solution
	-  (a) \(\displaystyle{ \int_1^{e^2}  \frac{5}{x} \,  dx}\)             (b) \(\displaystyle{ \int_0^{\ln 5} (e^x-1) \, dx}\)    solution
	-  (a) \(\displaystyle{ \int_{-3}^1 e^{v+5} \, dv}  \)          (b) \(\displaystyle{ \int_{0}^2 (6x-3)(8x^2+3) \, dx}  \)    solution
	
	-  The velocity function for a particle moving along a line is given by \( v(t)=2t-6\) meters per second on the time interval \( 1\leq t 
	\leq 4\). (a) Find the displacement and (b) the distance traveled by the 	particle during the given time interval.   solution