The Definite Integral part One
  
 
		- The graph of \(f\) is shown. Evaluate each integral by interpreting it in terms of areas.   solution
(a) \( \displaystyle{\int_{0}^4 f(x)   dx}\)            
		(b) \( \displaystyle{\int_{6}^{10} f(x)   dx}\)           
		(c) \( \displaystyle{\int_{0}^{10} f(x)   dx}\)
   
 
		
   
-  The graph of \(g\) consists of two straight lines and a semicircle. Use it to evaluate each integral.  solution
 
  
(a) \( \displaystyle{\int_{0}^4 g(x) \, dx}\)   (b) \( \displaystyle{\int_{0}^{8} g(x) \,  dx}\)   (c) \( \displaystyle{\int_{8}^{16} g(x) \, dx}\)    (d) \( \displaystyle{\int_{0}^{18} g(x) \, dx}\) 
    
  - Consider the following graph of a function \(y=f(x)\) which is a curve for \(x\le 0\) and a line for \(x\ge 0\). Given that the area of the left region is 6.5 
		as shown,
     evaluate (a) \( \displaystyle{\int_{0}^{-3} f(x) \, dx}\)   (b) \( \displaystyle{\int_{0}^{4} f(x) \,  dx}\)    (c) \( \displaystyle{\int_{0}^{8} f(x) \, dx}\)  
 
-  Evaluate each of the following integrals by interpreting it in terms 
  of areas.   solution 
 (a) \( \displaystyle{\int_{-2}^3 |x| \, dx}\)                  (b) \( \displaystyle{\int_{-1}^4 (4-2x)\, dx}\) 
    
    
  -  Evaluate each of  the following integrals by interpreting it in  terms of areas.   solution
 (a) \( \displaystyle{\int_{0}^6 |x-4| \, dx}\)    (b) \( 
  \displaystyle{\int_{-2}^2 \sqrt{4-x^2} \, dx}\)  
	
	
	
	 -  Evaluate each integral by interpreting it in terms of areas.  solution
(a) \(\displaystyle  \int_{-2}^1 |x|\, dx \)     (b) \(\displaystyle  \int_{1}^4 |x-2|\, dx \)     
   (c) \(\displaystyle   \int_{-2}^2\sqrt{4-t^2} \, dt \)
	
  
	
		-  If \( \displaystyle \int_0^5 f(x)\, dx = 6\) and \(\displaystyle 
		\int_3^5 f(x)\, dx=2\), find \(\displaystyle \int_0^3 f(x)\, dx\).   solution
 
		-  If \( \displaystyle \int_1^6 f(x)\, dx = 7,   \int_1^6 
		g(x)\, dx= -2\) , find (a) \(\displaystyle \int_1^6 [3f(x)-2g(x)]\, 
		dx\),  (b) \(\displaystyle \int_1^6 [3+f(x)]\, dx\).  solution