Section 3.5 Examples
            
          
      
      
       Use implicit differentiation to find \( \displaystyle \frac{dy}{dx} \).
        1.   \( \displaystyle 7x^3y^5-4x^7+5y^9=6y+13\)  
        
          
      Solution
      
        
         
        
        2. \( \displaystyle \sin(x)\sin(y)=\sin{(xy)}\)  . 
        
          
      Solution
      
        
 
         
        3. Given  \( \displaystyle  x^5y^3+4x^3=2y^2-8 \).
 
  
 
  (a) Find \( \displaystyle \frac{dy}{dx} \).
  Solution
  
  (b) Find the equation of the tangent line to the above curve at \( (0,2) \) 
 Solution
  
        
       
       4. Find the derivative of the function.  
  
 (a)\(y=\sin^{-1}( 7x^5-2x^8)\) 
  
      
      Solution
  
 (b) \( y=\tan^{-1}( \sqrt[3]{x}+\sqrt[5]{x}) \)
     
  
      Solution