Section 3.2  Product and Quotient Rules
            
          
      
      
       Differentiate the following functions.
        1. \( \displaystyle f(x)= \sqrt[7]{x^4}(3x^2+8e^x)\) 
        
          
      Solution
      
        
        2. \( \displaystyle g(t)=\frac{e^t}{1-2t+3t^2}\) 
        
          
      Solution
      
        
 
        3. \( \displaystyle h(u)= \left(\frac{5}{u^2}+2u^3\right)7^u\) 
        
          
      Solution
      
        
 
        4. \( \displaystyle f(z)= \frac{az^2}{b+ce^z}\) 
        
          
      Solution
      
        
        
        5. Find the equation of the tangent line to the curve \( \displaystyle f(x)= \frac{x}{1-2x^2}\) at \((1,-1)\). 
        
          
      Solution
      
        
 
        
        6. If \(g(x)=xe^x\) find \(g''(1)\).
        
          
      Solution
      
        
        
        7. Suppose that \(f(3)=-1\), \(g(3)=2\), \(f'(3)=-3\), and \(g'(3)= 5\). Find \(h'(3)\).
        
          (a) \(h(x)=2f(x)+8g(x)+2x\)
          
          
      Solution
      
        
 
          
          (b) \(\displaystyle h(x)= f(x)g(x) \)
          
      Solution
      
        
 
          (c) \(\displaystyle h(x)= \frac{f(x)}{g(x)} \)
          
      Solution
      
        
 
          (d) \(\displaystyle h(x)=\frac{f(x)+x^2}{g(x)+1}\)
          
      Solution