Section 2.2 — Limit of a Function
Determine the following limits.
- 
          \( \displaystyle \lim_{x \to -2^+} \frac{e^x}{x+2} \)
- 
          \( \displaystyle \lim_{x \to 3^-} \frac{x-5}{x-3} \)
- 
          \( \displaystyle \lim_{x \to 1^+} \ln(x^2-1) \)
- 
          Sketch a graph of a function \(f\) that satisfies all of the following conditions:- \( f(-2) = 1 \)
- \( f(3) = 4 \)
- \( \displaystyle \lim_{x \to -2^- } f(x) = 1 \)
- \( \displaystyle \lim_{x \to -2^+ } f(x) = -1 \)
- \( \displaystyle \lim_{x \to 3} f(x) = 2 \)
 
- 
          Sketch a graph of a function \(f\) that satisfies all of the following conditions:- \( f(-1) = -3 \)
- \( f(2) = 4 \)
- \( \displaystyle \lim_{x \to 2^- } f(x) = 1 \)
- \( \displaystyle \lim_{x \to 2^+ } f(x) = 4 \)
- \( \displaystyle \lim_{x \to -1} f(x) = -2 \)
- \( \displaystyle \lim_{x \to 4^- } f(x) = -\infty \)
- \( \displaystyle \lim_{x \to 4^+ } f(x) = \infty \)
- \( \displaystyle \lim_{x \to \infty } f(x) = 1 \)
 
- 
          The graph of a function \( f \) is given below. Find the following.  Given graph of \(y=f(x)\). (a) \( \displaystyle \lim_{x \to 2^- } f(x) = \)(b) \( \displaystyle \lim_{x \to 2^+ } f(x) = \)(c) \( \displaystyle \lim_{x \to 2} f(x) = \)(d) \( f(2) = \)(e) \( \displaystyle \lim_{x \to 4^- } f(x) = \)(f) \( \displaystyle \lim_{x \to 4^+ } f(x) = \)(g) \( f(4) = \)(i) \( \displaystyle \lim_{x \to 7 } f(x) = \)(j) \( f(7) = \)(k) \( \displaystyle \lim_{x \to 9^- } f(x) = \)(l) \( \displaystyle \lim_{x \to 9^+ } f(x) = \)(m) \( \displaystyle \lim_{x \to 0} f(x) = \)(n) \( f(0) = \)