1. Sketch the graph of an example of a function that satisfies all 
        of the given conditions.
        
                \(\displaystyle \lim_{x
        \rightarrow -3} f(x)= - \infty \), \(\displaystyle \lim_{x \rightarrow
        4^+} f(x)=  \infty \), \(\displaystyle \lim_{x \rightarrow 4^-}
        f(x)= - \infty \)
        
               \(\displaystyle \lim_{x \rightarrow
        -\infty} f(x)= 1 \), \(\displaystyle \lim_{x \rightarrow \infty} f(x)= -
        2 \).
        
        
        
        
Solution
        
        
        
        2. For the function whose graph is given below state the following.
        
                   (a)
        \(\displaystyle \lim_{x \rightarrow \infty} f(x)
        \),         (b) \(\displaystyle
        \lim_{x \rightarrow -\infty} f(x) \), 
        
                   (c)
        \(\displaystyle \lim_{x \rightarrow 2} f(x)
        \),               
        (d) \(\displaystyle \lim_{x \rightarrow -2} f(x) \),
        
                   (e) The
        equations of the asymptotes.
        
        
 Solution
        
        
        Solution
        
        
        Find the limit or show that it does not exist. 
        
        3. \(\displaystyle  \lim_{x \rightarrow \infty}\frac{5x-7}{3x+4} \)
        
        
        
Solution
        
        
        4. \(\displaystyle  \lim_{x \rightarrow
        \infty}\frac{5+4x^2+7x^3}{x^5-2x+4} \)
        
        
        
Solution
        
        
        5. \(\displaystyle  \lim_{u \rightarrow
        \infty}\frac{u^2\sqrt{u}-u}{3u^{5/2}+5u^{3/2}-4} \)
        
        
        
Solution
        
        
        
        6. \(\displaystyle  \lim_{t \rightarrow
        \infty}\frac{\sqrt{25t^8-16t^4+t^2}}{3t^4+4t^3-2} \)
        
        
        
Solution
        
        
        7. \(\displaystyle  \lim_{x \rightarrow
        \infty}\frac{3e^x+4}{2-2e^x} \)
        
        
        
Solution
        
        
        
        8. \(\displaystyle  \lim_{x \rightarrow
        \infty}\frac{(3x^2-1)(5x+3)^2}{(3x^2+2x+4)^2} \)
        
        
        
Solution