Section 5.2 Examples
            
          
      
      
      
      
      1. If  \( f(x)=-x^2+4, -1\leq x \leq 3 \), evaluate the Riemann sum with \( n=4\), taking the sample points to be  right endpoints.
  
         
          Solution
         
        
      2. The graph of \(g\) is shown. Estimate \( \displaystyle \int_{-1}^{4}g(x)\, dx \) with five intervals using left endpoints.   
        
         
          
        
        
      
      Solution
      
      3. The graph of \( f\) consists of straight lines and a semicircle. Use the given graph to evaluate the following. 
           
            
        
        
        (a) \( \displaystyle \int_{-4}^{-1} f(x) dx \)
 
Solution
        (b) \( \displaystyle \int_{-4}^{1} f(x) dx \)
Solution
        (c) \( \displaystyle \int_{2}^{6} f(x) dx \)
Solution
        (d) \( \displaystyle \int_{6}^{6} f(x) dx \)
Solution
        (e) \( \displaystyle \int_{6}^{2} f(x) dx \)
Solution
        (f) \( \displaystyle \int_{-4}^{6} f(x) dx \)
Solution
        (g)  If \( \displaystyle g(x) =\int_{0}^{x} f(t) dt \), evaluate \( g(8) \).   
Solution
     
      4. If \( \displaystyle \int_{-3}^{10} f(x)\;\; dx = 20 \) and ,\( \displaystyle \int_5^{-3} f(x) \;\; dx = 7\) , find \( \displaystyle \int_{10}^{5} f(x) dx \). 
Solution