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Abstract. A subset of the set of all positive semi-definite ma-
trices of a given size which is invariant under Schur (component-
wise) multiplication by an arbitrary positive semi-definite matrix
is said to be a Schur ideal. A subset of k-dimensional complex
space is said to be hyperconvex if it arises as the set of possible
values (w1, . . . , wk) = (f(α1), . . . , f(αk)) arising from restricting
contractive elements f from some uniform algebra A to a finite set
{α1, . . . , αk} in the domain. When the uniform algebra is the disk
algebra, the hyperconvex set is said to be a Pick body. Motivated
by the classical Pick interpolation theorem, Paulsen has introduced
a natural notion of duality between Schur ideals and hyperconvex
sets. By using some recently developed results in operator algebras
(matricial Schur ideals), we show that each Pick body has a unique
affiliated Schur ideal.

1. Introduction

The classical Nevanlinna-Pick problem is the following: given
{α1, ..., αk} a k-tuple of distinct points with |αi| < 1 and given
{w1, ..., wk} a k-tuple of complex numbers what are the necessary and
sufficient conditions for the existence of a function f , analytic in the
open disk D, ‖f‖∞ ≤ 1 and such that f(αi) = wi? When such a func-
tion f exists, the function f is said to interpolate the given sequences
{αi} and {wi}. This question was first answered by G. Pick in 1916
in his paper [11] where he states explicitly when one can interpolate
the given sequences {αi} and {wi}. In 1919 (1929) R. Nevanlinna con-
tributed to the study of interpolation by bounded analytic functions in
his paper(s) [7] ([8]) by providing an inductive procedure which enables
one to construct a bounded analytic function in D which interpolates
the given sequences {αi} and {wi}. We will now state Pick’s theorem.

Theorem 1. If α1, ..., αk, w1, ..., wk ∈ D, then there exists an analytic
function f : D → D with f(αi) = wi if and only if the matrix(

1− w̄iwj

1− ᾱiαj

)k

i,j=1
1
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is positive semi-definite.

Fix α1, ..., αk in D. B. Cole, K. Lewis, and J. Wermer in [4] define a
Pick body, denoted P(α1, ..., αk), as follows:

P(α1, ..., αk) = {~w ∈ Ck : ∃ f ∈ H∞(D), ‖f‖∞ ≤ 1, f(αi) = wi}.

This is precisely the set of all k-tuples (w1, ..., wk) in Ck which satisfy
the necessary and sufficient conditions of Pick’s theorem. It turns out
that Pick bodies are a special class of sets contained a more general
class of sets called “hyperconvex”. To this end, let X be a compact
Hausdorff space and let C(X) denote the continuous complex-valued
functions on X. We will call A ⊆ C(X) a uniform algebra provided
that A is closed, contains the identity, and separates points in X. Fix
x1, ..., xk in X. B. Cole, K. Lewis, and J. Wermer in [4], define an
interpolation body, denoted D(A; x1, ..., xk), in the following way: a
point ~w = (w1, ..., wk) in Ck belongs to D(A; x1, ..., xk) if for each ε > 0,
there exists f in A with ‖f‖∞ ≤ 1 + ε such that f(xi) = wi. The
set D(A; x1, ..., xk) is the unit ball of the Banach algebra Ck (under
coordinate-wise multiplication) for some norm on Ck. Sets in the closed
k-polydisk arising as D(A; x1, ..., xk) for some A and x1, ..., xk in X are
called hyperconvex in [4]. If we let A(D) denote the analytic functions
in D which are continuous on D− and let α1, ..., αk in D, then in [4]
they show that the Pick body P(α1, ..., αk) = D(A(D); α1, ..., αk).

Schur ideals are a relatively new concept which act as a natural
“dual” object for hyperconvex sets. A precise definition of the Schur
ideal will be given in Section 2. In general, there are often many Schur
ideals that could serve as the “dual” of a hyperconvex set. In this paper
we shall show that for this special class of hyperconvex sets (i.e, Pick
bodies) there is a unique “dual” Schur ideal.

2. Preliminaries

Let A contained in C(X) be a uniform algebra and let Ix denote
the ideal of functions vanishing at the points x1, ..., xk in X. Then
the quotient algebra A = A/Ix is an operator algebra [3]. Since A
separates points in X there exist functions f1, ..., fk in A with fi(xj) =
δi,j where δi,j denotes the Kronecker delta. Thus in A we have that
Ei = [fi] are a family of k commuting idempotents satisfying EiEj =
δi,jEj, E1 + . . . Ek = 1, and which span A. Therefore, when studying
the properties of an interpolation body, one can choose to work with
the uniform algebra A or its corresponding quotient algebra (operator
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algebra) A since we have the following equalities:

D(A; x1, ..., xk) = {~w ∈ Ck : ∃ f ∈ A, ‖f‖ ≤ 1 and f(xi) = wi}−

= {~w ∈ Ck : ∃ f ∈ A, ‖[f ]‖ ≤ 1 and f(xi) = wi}
= {(w1, ..., wk) ∈ Ck : ‖w1E1 + . . . + wkEk‖ ≤ 1}.

For this reason we will abbreviate D(A; x1, ..., xk) as D(A) and often
interchange the two without mention.

Recall if we let Mn denote the C∗−algebra of n × n matrices and
let Mn(A) denote the algebra of n× n matrices over A, then Mn(A) is
endowed with the norm

‖F‖ = sup{‖F (x)‖Mm : x ∈ X},

where F = (fij) is in Mn(A). Moreover if x1, ..., xk in X and A = A/Ix,
then Mn(A) is endowed with the quotient norm by identifying

Mn(A) = Mn(A)/Mn(Ix).

Now given points x1, ..., xk in X, the abstract interpolation problem
is concerned with determining the set of k-tuples ~W = (W1, ...,Wk) of
n× n matrices, denoted

Dn(A; x1, ..., xk) = { ~W : ∃F ∈ Mn(A), ‖F‖ ≤ 1, F (xi) = wi}−

= { ~W : ∃F ∈ Mn(A), ‖[F ]‖ ≤ 1, F (xi) = wi}

= {(W1, ...,Wk) : ‖
k∑

i=1

Wi ⊗ Ei‖ ≤ 1}.

Thus the sets {Dn(A)}, n = 1, 2, ..., are just a natural coordinatization
of the closed unit balls of Mn(A) for an operator algebra A generated
by k-idempotents satisfying the above relations.

Throughout the paper Mk will denote the k × k matrices with com-
plex entries and M+

k will denote the closed cone of positive semi-definite
matrices in Mk. If P is in Mk, then it will be understood that P is the
matrix (pij)

k
i,j=1. If P, Q are in Mk, then the Schur product of the ma-

trices P and Q, denoted as P ∗Q, is defined to be (pij)∗ (qij) = (pijqij).
The following theorem is due to Cole and Wermer [5], in which they

give conditions on a point (w1, ..., wk) in Ck in order that (w1, ..., wk)
belong to the interpolation bodyD(A; x1, ..., xk) where A is an arbitrary
uniform algebra.

Theorem 2. If A ⊆ C(X) is a uniform algebra and x1, ..., xk ∈ X,
then there exists a set S ⊆ M+

k such that

(w1, ..., wk) ∈ D if and only if ((1− w̄iwj)pij) ≥ 0 for all (pij) ∈ S.
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In [9], V. Paulsen observes that Theorem 2 suggests the following
“dualities” between closed subsets of the closed k-polydisk and subsets
of M+

k . Given a non-empty set S ⊆ M+
k define

S⊥ = {(w1, ..., wk) ∈ Ck : ((1− w̄iwj)pij) ≥ 0 ∀ (pij) ∈ S}.

Similarly, given a subset D of the closed k-polydisk with 0 ∈ D define

D⊥ = {(pij) : ((1− w̄iwj)pij) ≥ 0 ∀ (w1, ..., wk) ∈ D}.

Since we insist that 0 ∈ D then D⊥ is always a set of positive semi-
definite matrices. Observing further that the setD⊥ has certain proper-
ties, V. Paulsen [9] introduces the concept of a Schur ideal. By studying
this duality between hyperconvex sets and Schur ideals and using some
results from the theory of abstract operator algebras, V. Paulsen is
able to generalize J. Agler’s scalar-valued interpolation results [1] for
the bidisk to more general product domains [9]. For another approach
to such problems see the paper of A. Tomerlin [14].

Definition 1. Let I ⊆ Mk
+ be a non-empty set. Then I will be called

a Schur ideal provided that:

(1) A, B ∈ I ⇒ A + B ∈ I.
(2) A ∈ I, P ∈ Mk

+ ⇒ A ∗ P ∈ I.

If D is a subset of the closed k-polydisk with 0 ∈ D, then D⊥ is a
Schur ideal. Moreover if D is a hyperconvex set, then D = D⊥⊥.

Definition 2. Let A ⊆ C(X), x1, ..., xk ∈ X, and S ⊆ M+
k . Then the

set S is said to be affiliated with the interpolation body D(A; x1, ..., xk)
provided that S⊥ = D(A; x1, ..., xk).

Note that each interpolation body D(A; x1, ..., xk) has an affiliated set
(Schur ideal), namely D(A; x1, ..., xk)

⊥.

Example. Fix α1, ..., αk in D and let P =
(

1
1−ᾱiαj

)
. Note that in

Theorem 2 if A = A(D) and xi = αi, then S = {P}. It follows from
Theorem 1 that P(α1, ..., αk) = {P}⊥. However if v1, ..., vk in Ck such
that vi 6= 0 and (w1, ..., wk) in {P}⊥, then we have that

(
1− w̄iwj

1− ᾱiαj

)
≥ 0 =⇒ D∗

v

(
1− w̄iwj

1− ᾱiαj

)
Dv ≥ 0

=⇒ (1− w̄iwj) ∗D∗
v

(
1

1− ᾱiαj

)
Dv ≥ 0

=⇒ (w1, ..., wk) ∈ {D∗
vPDv}⊥.
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Similarly if (w1, ..., wk) in {D∗
vPDv}⊥, then (w1, ..., wk) in {P}⊥. Here

Dv denotes the matrix with diagonal entries v1, ..., vk and zeros else-
where.

Thus, given an interpolation body D, an affiliated set S need not
be unique. This is why we study Schur ideals. In this example we are
simply producing different generating sets for the same Schur ideal.
This is why the “right” question is whether or not there is a unique
Schur ideal affiliated with a given hyperconvex set. For Pick bodies we
have uniqueness. We now state our main result.

Theorem A. If I ⊆ M+
k is a closed Schur ideal such that I⊥ =

P(α1, ..., αk), then I =
〈(

1
1−ᾱiαj

)〉
.

Here
〈(

1
1−ᾱiαj

)〉
denotes the Schur ideal generated by the matrix(

1
1−ᾱiαj

)
(i.e,

(
1

1−ᾱiαj

)
∗M+

k ). So despite the fact that the Pick body

P(α1, ..., αk) does not have a unique affiliated set S ⊆ M+
k , it does have

a unique affiliated Schur ideal. Theorem A can really be thought of
as just a matrix theory result. However, it is surprising for a proof we
need to invoke the abstract theory of operator algebras (matricial Schur
ideals) to solve this matrix theory problem. The reader is encouraged
to try and find an alternate proof. By solving this problem we are able
to gain some insight into understanding the following problem:

Problem. Let I ⊆ M+
k be a closed Schur ideal such that

I⊥ = D(A(D2); (α1, β1), ..., (αk, βk)). Is I =
〈(

1
1−ᾱiαj

)〉
∩

〈(
1

1−β̄iβj

)〉
?

In joint work with V. Paulsen and G. Weiss, we have shown that
for three particular points say (α1, β1), (α2, β2), (α3, β3) in the bidisk,〈(

1
1−ᾱiαj

)〉
∩

〈(
1

1−β̄iβj

)〉
is not finitely generated. Note, that

D(A(D2); z1, ..., zk)
⊥ =

〈(
1

1−ᾱiαj

)〉
∩

〈(
1

1−β̄iβj

)〉
, see [9]. If the above

Problem is answered in the affirmative, then this would show that J.
Agler’s bidisk formula [1] is not computable in the following sense.

Definition 3. The set D(A; x1, ..., xk) is said to be weakly
computable provided that there exists a finitely generated Schur ideal
I with I⊥ = D(A; x1, ..., xk).

3. Matricial Schur Ideals

In this section we give a survey of those results in V. Paulsen’s paper,
Operator Algebras of Idempotents [10](preprint), necessary to prove
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Theorem A. Since this is just a survey, the proofs will be omitted. The
theorem (lemma, proposition, and definition) numbers in parenthesis
coincide with the numbers in [10].

Definition 4. (1) Fix a natural number k. A sequence of sets S =
{Sn}, Sn ⊆ Mk(Mn)+ will be called a matricial Schur ideal provided
that:

(i) (Qij), (Pij) ∈ Sn ⇒ (Qij + Pij) ∈ Sn.
(ii) (Qij) ∈ Sn and B1, ..., Bk are n ×m matrices ⇒ (B∗

i QijBj) ∈
Sm.

Let E1, ..., Ek be bounded operators on a Hilbert space H satisfying
EiEj = δi,jEi and E1 + . . . + Ek = I. We let A denote the (matrix-
normed) operator algebra generated by this set. We shall call such
an algebra a k − idempotent algebra. Given a concrete k-idempotent
algebra on a Hilbert space, let A∗A = span{E∗

i Ej : i, j = 1, ..., k}
denote the corresponding operator system.

Lemma 1. (2.1) Let Aij ∈ Mn. Then
∑k

i,j=1 Aij⊗E∗
i Ej ≥ 0 on Cn⊗H

if and only if (Aij ⊗ E∗
i Ej) ≥ 0 on Cnk ⊗H.

Definition 5. (2) Let A be a k-idempotent algebra. Set

Sn(A∗A) = {(Φ(E∗
i Ej)) : Φ : A∗A → Mn is completely positive}.

Theorem 3. (2.2) Let A be a k-idempotent algebra. Then

(1) S(A∗A) = {Sn(A∗A)} is a matricial Schur ideal.
(2) Let Aij ∈ Mn, i, j = 1, ..., k. Then (Aij ⊗E∗

i Ej) ≥ 0 if and only
if (Aij ⊗Qij) ≥ 0 for all (Qij) ∈ Sn(A∗A).

(3) Let B = span{Fi : i = 1, ..., k} be another k-idempotent alge-
bra. Then the map E∗

i Ej → F ∗
i Fj is n-positive if and only if

Sn(B∗B) ⊆ Sn(A∗A).

Definition 6. (3) Let A be a k-idempotent algebra. Set Sn(A) =
{(Qij) ∈ Mk(Mn)+ : ((I −W ∗

i Wj)⊗Qij) ≥ 0 ∀(W1, ...,Wk) ∈ Dm(A),
m arbitrary}.

Theorem 4. (2.3) Let A be a k-idempotent algebra. Then

(1) S(A) = {Sn(A)} is a matricial Schur ideal.
(2) Let Wi ∈ Mn. Then ‖

∑
Wi ⊗ Ei‖ ≤ 1 if and only if ((In −

W ∗
i Wj)⊗Qij) ≥ 0 for all (Qij) ∈ Sn(A).

(3) Sn(A∗A) ⊆ Sn(A) for all n.
Let B = span{Fi : i = 1, ..., k} be another k-idempotent algebra.

(4) The following are equivalent
(i) Ei → Fi is n contractive.
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(ii) Dn(A) ⊆ Dn(B).
(iii) Sn(B) ⊆ Sn(A).

Consequently, the map Ei → Fi is a completely isometric isomorphism
if and only if S(A) = S(B).

Let P in M+
k with pij 6= 0 for all i and j and define A(P ) = {Ei =

P 1/2EiiP
−1/2 : i = 1, ..., k} where Eij denote the canonical matrix

units. In Example 2.4 [10], V. Paulsen shows that

Sn(A(P )∗A(P )) = {(pijRij) : (Rij) ∈ Mk(Mn)+}.
In particular, S1(A(P )∗A(P )) = 〈P 〉 . In Example 2.6 [10], it is shown

when P is the special matrix
(

1
1−ᾱiαj

)
that Sn(A(P )) = Sn(A(P )∗A(P ))

for all n. Moreover when P =
(

1
1−ᾱiαj

)
, every isometric representa-

tion of A(P ) is completely isometric. One can see this by utilizing
the matrix-valued Nevanlinna-Pick Theorem [12] from which one can
verify that A(P ) is completely isometrically isomorphic to A(D)/Iα.
Thus if B is isometrically isomorphic to A(P ), then B is isometrically
isomorphic to A(D)/Iα. Hence by a theorem of W. Arveson [2], B is
completely isometrically isomorphic to A(D)/Iα and the result follows.
We close this section with the following proposition.

Proposition 5. (2.8) Let S ⊆ Mk(Mn)+ satisfy (Qij) ∈ S implies
(B∗

i QijBj) ∈ S whenever B1, ..., Bk are in Mn, and let Aij ∈ Mn. Then

(Aij ⊗ Qij) ≥ 0 for all (Qij) ∈ S if and only if
∑k

i,j=1 Tr(At
ijQij) ≥ 0

for all (Qij) ∈ S, where Tr denotes the trace of the matrix and At

denotes the transpose of the matrix A.

4. Proof of Theorem A

Before proving Theorem A we will state and prove 3 lemmas from
which the proof of Theorem A will follow. The following notation will
remain fixed for the remainder of the paper.

Fix α1, ..., αk in D. Let I ⊆ M+
k such that I⊥ = P(α1, ..., αk). Let

P =
(

1
1−ᾱiαj

)
and define A(P ) as in Section 3. If we let R = {Q ∈ I :

Q is invertible}, then 〈R〉− = I since I⊥ = P(α1, ..., αk), where 〈R〉
consists of all finite sums P1 ∗Q1 + . . . + Pm ∗Qm (m ∈ N; Q1, ...Qm ∈
R; P1, ..., Pm ∈ M+

k ). Define A(R) as follows:

A(R) = span{Fi =
⊕
Q∈R

Q1/2EiiQ
−1/2 : 1 ≤ i ≤ k}.

Since P(α1, ..., αk) is the unit ball of some norm on Ck we have that
there exits δ > 0 so that |wi| < δ implies (w1, ..., wk) ∈ P(α1, ..., αk).
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Thus, for all |wi| < δ and for all (qij) ∈ R we have that ((1−w̄iwj)qij) ≥
0. This yields (qij) ≥ (w̄iqijwj) for all |wi| < δ and for all (qij) ∈ R.
Integrating this inequality around the torus of radius δ yields (qij) ≥
δ2Diag(qii) for all (qij) ∈ R. Thus, δ2qmmEmm ≤ (qij) for each 1 ≤
m ≤ k and for each (qij) ∈ R. Hence if Fi =

⊕
Q∈RQ1/2EiiQ

−1/2,

then F ∗
i Fi =

⊕
Q∈RQ−1/2qiiEiiQ

−1/2 ≤ δ−2
⊕

Q∈R Ik×k and we have

that ‖Fi‖ ≤ δ−1. Thus each Fi is bounded and A(R) is a k-idempotent
operator algebra.

Lemma A. Sn(A(P )) = Sn(A(R)) for all n ≥ 1.

Proof: We have the following logical equivalences.

‖
k∑

i=1

wiFi‖ ≤ 1 ⇐⇒ ‖
⊕
Q∈R

Q1/2DwQ−1/2‖ ≤ 1

⇐⇒ ((1− w̄iwj)qij) ≥ 0 for all Q ∈ R
⇐⇒ (w1, ..., wk) ∈ P(α1, ..., αk)

⇐⇒ ‖
k∑

i=1

wiEi‖ ≤ 1.

Therefore A(R) is isometrically isomorphic to A(P ). Hence A(R) is
completely isometrically isomorphic to A(P ) (see section 3). Thus by
Theorem 4, Sn(A(P )) = Sn(A(R)) for all n ≥ 1. 2

Lemma B. Sn(A(P )∗A(P )) ⊆ Sn(A(R)∗A(R)) for all n ≥ 1.

Proof: By Theorem 3, Sn(A(P )∗A(P )) ⊆ Sn(A(R)∗A(R)) for all
n ≥ 1 if and only if the map F ∗

i Fj −→ E∗
i Ej is completely positive.

The map π : A(P ) −→
⊕

Q∈RMk, where π(Ei) = Fi, is a complete

isometry (Lemma A) and by a theorem of M. Hamana [6] there exists
a ∗−epimorphism γ2 such that the following diagram commutes.
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C∗(A(P )) �
ι

A(P ) -
π

C∗(A(R))

πe

?

C∗
e (A(P ))

@
@

@
@

@
@

@
@
@R

γ1

�
�

�
�

�
�

�
�

�	

γ2

In the above diagram C∗(A(P )) denotes the C∗-algebra generated
by the idempotents E1, ..., Ek and C∗(A(R)) is defined analogously.
We also have that C∗

e (A(P )) denotes the C∗-envelope of the operator
algebra A(P ). The C∗-envelope of an operator algebra B is a C∗-
quotient of any C∗-algebra that contains B completely isometrically.
Thus the C∗-envelope is in a precise sense the ”minimal” C∗-algebra
generated by B. The concept of the C∗-envelope is due to W. Arveson
[2] and M. Hamana [6].

Note that C∗(A(P )) is ∗ − isomorphic to Mk, but Mk is simple
and hence C∗(A(P )) must be C∗

e (A(P )). Thus we have that γ1 is
∗−isomorphism. If we define γ : C∗(A(R)) −→ C∗(A(P )) to be γ =
γ−1

1 ◦γ2, then γ is a ∗−epimorphism. Therefore γ is completely positive
and Sn(A(P )∗A(P )) ⊆ Sn(A(R)∗A(R)) for all n ≥ 1 by Theorem 3.
2

Lemma C. S1(A(R)∗A(R)) = 〈R〉−.

Proof: We will first show that 〈R〉− ⊆ S1(A(R)∗A(R)). Let (rij) ∈
〈R〉−. We must show that the map φ : A(R)∗A(R) −→ C, defined by
φ(F ∗

i Fj) = rij, is completely positive. Note that,

(aijF
∗
i Fj) ≥ 0 ⇐⇒ (aijqijEij) ≥ 0 for all Q ∈ R

⇐⇒ (aijqij) ≥ 0 for all Q ∈ R.

Let
∑

i,j aijF
∗
i Fj ≥ 0. By Lemma 1,

∑
i,j aijF

∗
i Fj ≥ 0 if and only if

(aijF
∗
i Fj) ≥ 0. Consequently

∑
i,j aijF

∗
i Fj ≥ 0 if and only if (aijqij) ≥

0 for all Q ∈ R. Thus (aijrij) ≥ 0 which implies that
∑

i,j aijrij =

φ(
∑

i,j aijF
∗
i Fj) ≥ 0. Hence φ is a positive linear functional. Since

A(R)∗A(R) is an operator system, φ is completely positive and (qij) ∈
S1(A(R)∗A(R)).
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We shall now show that S1(A(R)∗A(R)) ⊆ 〈R〉−. Suppose that
(q̂ij) ∈ S1(A(R)∗A(R)) and (q̂ij) 6∈ 〈R〉−. Since 〈R〉− is a cone in
Mk we can pick a bounded linear functional f : Mk −→ C such that
f(〈R〉−) ≥ 0 and f((q̂ij)) < 0, where f(Eij) = aij. Thus,

f(R) =
k∑

i,j=1

aijrij ≥ 0 for all R ∈ R ⇐⇒ (aijrij) ≥ 0 for all

R ∈ R by Prop.5

⇐⇒ (aij ⊗ F ∗
i Fj) ≥ 0

⇐⇒ (aij ⊗ qij) ≥ 0 for all

(qij) ∈ S1(A(R)∗A(R))

=⇒
k∑

i,j=1

aijqij ≥ 0 for all

(qij) ∈ S1(A(R)∗A(R)).

But this contradicts the fact that f((q̂ij)) < 0 since f((q̂ij)) =∑k
i,j=1 aij q̂ij ≥ 0. Therefore S1(A(R)∗A(R)) ⊆ 〈R〉− and

S1(A(R)∗A(R)) = 〈R〉−.2

Proof: (Theorem A) Recall, that Sn(A(P )) = Sn(A(P )∗A(P )) for
all n ≥ 1 and that S1(A(P )∗A(P )) = 〈P 〉 (Section 3). We also have
that Sn(A(R)∗A(R)) ⊆ Sn(A(R)) for all n ≥ 1 via Theorem 4.

Lemma B states that Sn(A(P )∗A(P )) ⊆ Sn(A(R)∗A(R)) for all
n ≥ 1 and Lemma A states that Sn(A(P )) = Sn(A(R)) for all n ≥ 1.
But this implies that Sn(A(P )∗A(P )) = Sn(A(R)∗A(R)) for all n ≥ 1.
Thus by Lemma C we have that

〈P 〉 = S1(A(P )∗A(P )) = S1(A(R)∗A(R)) = 〈R〉−.

Therefore, I =
〈(

1
1−ᾱiαj

)〉
. 2
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