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Abstract. We study characteristics which might distinguish two-graphs by

introducing different numerical measures on the collection of graphs on n ver-

tices. Two conjectures are stated, one using these numerical measures and the
other using the deck of a graph, which suggest that there is a finite set of con-

ditions differentiating two-graphs. We verify that among the four non-trivial

non-isomorphic regular two-graphs on 26 vertices that both conjectures hold.

1. Introduction

The notion of a frame was introduced over 50 years ago in the work of Duffin
and Schaeffer [9]. However, in the last few years frames have caught the attention
of mathematicians from a variety of disciplines. This is due in large part to the fact
that until recently little was known about frames. Furthermore, frame theory has
been shown to have a number of practical applications encompassing quantization,
signal reconstruction and coding theory, to name a few. In [1] and [8], Bodman,
Holmes, and Paulsen use frame theory to answer certain questions related to the
“lost package problem”, a problem in engineering. In these papers, they show that a
certain family of frames, two-uniform frames, are optimal for one and two erasures.
Strohmer and Heath, in [17], prove similar results about two-uniform frames and
make a clear connection between finite frames and areas such as spherical codes,
equidistant point sets, two-graphs, and sphere packings. The aforementioned three
papers take advantage of known results and classical constructions of two-graphs to
prove several results about two-uniform frames. Much of the theory on two-graphs
can be found in the works of J.J. Seidel, e.g., [2], [4], [14], and [19]. In fact, two-
uniform frames are in one-to-one correspondence with regular two-graphs. It is this
relationship between frame theory and graph theory which motivates the work in
this paper.

A two-graph is the collection of graphs obtained from a graph X on n vertices
by switching on every subset of the vertex set of X. For this reason a two-graph is
sometimes referred to as a switching class. Given graphs X and Y , if any pair of
representatives from their respective switching classes are isomorphic, we say that
the graphs X and Y are switching equivalent. We will make the above terminology
precise in Section 2. In this paper we explore characteristics which might differen-
tiate the switching equivalent classes for graphs on n vertices. In the language of
Seidel [14], we investigate the isomorphism classes of two-graphs. This exploration
led us to conjecture that graphs, X1 and X2, are switching equivalent if and only
if a finite set of norm conditions are satisfied. This is Conjecture 4 in Section 6.
We verify this conjecture for n less than or equal to 10 and also for four “special”
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graphs on 26 vertices. We considered these four graphs “special” since they mark
the first appearance of nontrivial non-isomorphic regular two-graphs for fixed n.

This paper is organized as follows. In Section 2 we fix notation and emphasize the
distinction between the switching class and switching equivalent class of a graph.
The infinity norm of a graph is defined in Section 3 and is shown not sufficient
to determine the switching equivalent class of a graph. The spectra of switching
equivalent classes are considered in Section 4. Examples of cospectral classes are
known, but we include this section for completeness of the discussion. Section 5
introduces another new conjecture for switching equivalent classes in terms of decks
of graphs. In Section 6, the 1-norm of a graph is defined along with a corresponding
conjecture for switching equivalent classes. Section 7 verifies the conjectures of
Sections 5 and 6 on the smallest nontrivial example of non-isomorphic two-graphs on
n vertices. Lastly, Appendix A gives an introduction to frame theory and provides
motivation for our definitions of the infinity norm and the 1-norm of a graph.

2. Switching

All graphs considered in this paper will be simple, i.e. undirected, without loops,
without multiple edges, and finite. Denote by A(X), V (X) and E(X) the adjacency
matrix, the set of vertices and the set of edges of the graph X, respectively. We
also use In for the n× n identity matrix and Jn for the n× n matrix of all ones.

Definition 2.1. Given a graph X on n vertices, the Seidel adjacency matrix
of X is defined to be the n× n matrix S(X) := (sij) where si,j is defined to be −1
when i and j are adjacent vertices, +1 when i and j are not adjacent, and 0 when
i = j.

The Seidel adjacency matrix of X is related to the usual adjacency matrix A(X)
by

S(X) = Jn − In − 2A(X).

Definition 2.2. Let X be a graph and τ ⊆ V (X). Now define the graph Xτ to be
the graph that arises from X by changing all of the edges between τ and V (X)− τ
to nonedges and all the nonedges between τ and V (X)− τ to edges. This operation
is called switching on the subset τ , see [6].

The operation of switching is an equivalence relation on the collection of graphs
on n vertices. This can be seen by observing that if τ ⊆ V (X), then switching on
τ is equivalent to conjugating S(X) by the diagonal matrix D with Dii = −1 when
i ∈ τ and 1 otherwise. The switching class of X, denoted [X], is the collection
of graphs that can be obtained from X by switching on every subset of V (X). A
switching class of graphs is also known as a two-graph.

Definition 2.3. The graphs X and Y on n vertices are called switching equiv-
alent if Y is isomorphic to Xτ for some τ ⊂ V (X), see [6].

Switching equivalence is also an equivalence relation on the collection of graphs
on n vertices. The switching equivalent class of X, denoted [[X]], is the col-
lection of graphs that can be obtained from X by conjugating S(X) by a signed
permutation matrix, i.e. the product of a permutation matrix and a diagonal ma-
trix of ±1′s. Thus, the spectrum of the Seidel adjacency matrices of switching
equivalent graphs are identical. Note that [X] is a subset of [[X]] for any graph.
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For the complete graph and empty graph on n vertices, their switching classes are
equal to their switching equivalent classes. The following examples are similar to
Examples 3.6 and 3.7 in [14].

Example 2.4. On 3 vertices there are 4 non-isomorphic graphs, 2 distinct switch-
ing classes of graphs, and 2 distinct switching equivalent classes of graphs. The 4
non-isomorphic graphs X1, X2, X3, and X4 are listed below.

◦

◦ ◦

◦

◦ ◦

111111 ◦

◦ ◦ ◦

◦ ◦

111111

X1 X2 X3 X4

Thus [X1] = [[X1]] = [X2] and [X3] = [[X3]] = [X4] but [X1] 6= [X3].

Example 2.5. On 4 vertices there are 11 non-isomorphic graphs, 8 distinct switch-
ing classes of graphs, and 3 distinct switching equivalent classes of graphs. The 11
non-isomorphic graphs are X1, ..., X6, listed below, and their complements X6, ..., X11.

◦◦

◦ ◦

◦◦

◦ ◦

◦◦

◦ ◦

◦◦

◦ ◦

◦◦

◦ ◦

�������

◦◦

◦ ◦
X1 X2 X3 X4 X5 X6

The distinct switching classes are [X1], [X2], [X4], and the remaining graphs with
one edge. The distinct switching equivalent classes are [[X1]], [[X2]], and [[X4]].

Table 1 provides partial data on the number of non-isomorphic graphs, switching
classes, and switching equivalent classes. In [12], McKay gives the number of non-
isomorphic graphs on n vertices up to n = 12. Although, as indicated in Table
1 there is no known formula for the number of switching equivalent classes, in
[14], Seidel states that 2

1
2n

2−O(n logn) is an asymptotic formula for the number of
switching equivalent classes on n vertices due to P.M. Neumann through private
communication with Seidel. This formula is only slightly better than the number
of switching classes on n vertices. The authors constructed representatives of the
switching equivalent classes using the software package GAP, [5], but these numbers
are already documented in [2].

n non-isomophic switching classes switching equivalent classes
3 4 2 2
4 11 8 3
5 34 64 7
6 156 1024 16
7 1044 32,768 54
8 12,346 221 243
9 274,668 228 2038
10 12,005,168 236 33,120

n no known formula 2
(n−1)(n−2)

2 no known formula
Table 1. Class Sizes
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Using the terminology found in [2], if every vertex of a given graph has even
degree, we call it an Euler graph. The following results allow us to use Euler graphs
as unique, up to isomorphism, representatives of switching equivalent classes when
the number of vertices is odd.

Theorem 2.6. If G is a graph with an odd number of vertices, G is switching
equivalent to an Euler graph.

Proof. Let O be the set of odd degree vertices of G. Let τ = V (G) \ O, the set of
vertices of G with even degree. Take v to be a vertex in τ and use N(v) to denote
the vertices adjacent to v. Since |O| is even, |N(v) ∩ O| and |O \ N(v)| have the
same parity. So switching G on the set τ preserves the parity of the degree of each
vertex in τ . Similarly, let u be a vertex in O. Since |O| is even, |V (G) \ O| must
be odd. Therefore |N(u)∩ τ | and |τ \N(u)| have different parities and switching G
on the set τ changes the parity of each vertex in O. Thus, Gτ has only vertices of
even degree and is an Euler graph. �

Corollary 2.7. When n is odd, every switching equivalence class contains exactly
one Euler graph, up to isomorphism.

Proof. By Theorem 2.2 of [2], there are as many switching equivalent classes as
there are isomorphism classes of Euler graphs. Combining this with the above
theorem gives the desired result. �

Corollary 2.8. When n is odd, two Euler graphs are switching equivalent if and
only if they are isomorphic.

While Theorem 2.2 of [2] holds for n even as well as odd, Theorem 2.6 fails when
n is even. The following example demonstrates this fact.

Example 2.9. By Theorem 2.2 of [2], there are three Euler graphs up to isomor-
phism on four vertices. They are

◦◦

◦ ◦

◦◦

◦ ◦

◦◦

◦ ◦�������

E1 E2 E3

Switching E2 on a pair of nonadjacent vertices will result in an empty graph, the
same class as E1. Switching E3 on the isolated vertex results in the graph K4; so
E3 is in the class of the complete graph. None of these three graphs are in the class
[[X2]] from Example 2.5.

3. Infinity Norms

Our first attempt to find a characteristic which differentiates switching equivalent
classes comes in the form of a matrix norm similar to that used in [1].

Definition 3.1. Let Dm denote the set of diagonal matrices that have exactly m
diagonal entries equal to one and n−m entries equal to zero. Given a graph X on
n vertices, set

e∞m (X) := max{‖D(I + cS)D‖ : D ∈ Dm},
where S is the Seidel adjacency matrix of X, c = 1

n−1 , and the norm of the matrix
is understood to be the operator norm.
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The infinity norm of a graph X, e∞m (X), from Definition 3.1 is the maximum of
a set of

(
n
m

)
numbers for which correspond to the collection of induced subgraphs

on m vertices. Moreover, our choice for the constant c is the smallest c which
guarantees D(I + cS)D is a positive semi-definite matrix. So ‖D(I + cS)D‖ is the
largest eigenvalue of D(I+ cS)D. Lemma 3.2 and Proposition 3.3 below verify this
statement.

Lemma 3.2. If S is a Seidel adjacency matrix for a graph X on n vertices, then
‖S‖ is at most n− 1.

Proof. First note that the largest eigenvalue of Jn, the matrix of all ones, is n. For
any vector x in Rn and any S, changing signs to make all their entries positive can
only increase the value of the expression

〈x, (In + S)x〉
‖x‖2

.

Since In + S is a Hermitian matrix ‖In + S‖ is the maximum of the moduli of the
eigenvalues of In +S. Let x in Rn be an eigenvector of In +S corresponding to the
eigenvalue λ of largest modulus, and let x = (|x1|, ..., |xn|). It follows that:

‖In + S‖ = |λ| = |〈(In + S)x, x〉|
‖x‖2

≤ |〈Jnx, x〉|
‖x‖2

≤ ‖Jnx‖‖x‖
‖x‖2

≤ n.

Hence, ‖S‖ is at most n− 1. �

Proposition 3.3. Let µS denote the least eigenvalue of a Seidel adjacency matrix
S, and let S denote the set of all Seidel adjacency matrices on n vertices. Then

(1) µ := inf{µS : S ∈ S} = 1− n,
(2) In + cS is a positive semi-definite operator when c = 1

n−1 .

Proof. By Lemma 3.2, 1 − n ≤ µ. However, −n is the least eigenvalue of −Jn
and consequently the Seidel adjacency matrix S = In − Jn has −n + 1 for a least
eigenvalue. Therefore µ = −n+ 1.

Let σ(S) denote the spectrum of S. Then

σ(S) ⊆ [−n+ 1, n− 1]⇐⇒ σ (cS) ⊆ [−1, 1]

⇐⇒ σ (In + cS) ⊆ [0, 2].

Thus, In + cS is a positive semi-definite operator. �

Theorem 3.4. Let X be a graph on n vertices and S be the associated Seidel

adjacency matrix. Then e∞m (X) ≤ 1 +
m− 1
n− 1

. Furthermore, e∞m (X) = 1 +
m− 1
n− 1

if and only if X has an induced subgraph on m vertices which is complete bipartite
or empty.

Theorem 3.4 is a generalization of Bodman and Paulsen’s Theorem 5.3 in [1].
While our proof is similar, we include it to provide insight into the relationship
between a graph X and the value e∞m (X).

Proof. By Lemma 3.2 and the triangle inequality the claimed error bound follows:

e∞m (X) ≤ 1 +
m− 1
n− 1

.
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Assume that the graph X has an induced subgraph on m vertices which is
complete bipartite or empty. Choose D to have ones in the places on the diagonal
corresponding to the vertices of this subgraph and zeros elsewhere. Then, D(In +
Q)D is switching equivalent to DJnD. Since switching preserves the operator norm,
‖Im +Qm‖ = m implying that ‖Qm‖ = m− 1. Therefore

e∞m (X) = max{‖D(In + cS)D‖ : D ∈ Dm} = 1 +
m− 1
n− 1

.

Now assume that e∞m (X) = 1 + m−1
n−1 or equivalently ‖Qm‖ = m − 1. Then,

for some D, ‖D(In + Q)D‖ = m. Let x be an eigenvector corresponding to the
eigenvalue ±m. Choose a switching matrix S such that all of the entries of Sx are
positive, i.e., S should have −1′s on the diagonal in the places where the entries
of x are negative and 1′s on the other diagonal entries. Using reasoning similar
to the proof of Lemma 3.8, all of the entries of S(In + Q)S must be 1′s in the
rows and columns where D has 1′s on the diagonal. Otherwise, since Sx has all
positive entries and is the eigenvector corresponding to the largest eigenvalue of
SD(In +Q)DS, it would be possible to increase the largest eigenvalue of SD(In +
Q)DS = Im + Q′m by flipping signs in Q′m, contradicting that the inequality is
saturated. Hence, the induced subgraph on these vertices is switching equivalent
to the edgeless graph, i.e., this induced subgraph is complete bipartite. �

Corollary 3.5. Let X be a graph on n vertices. Then e∞3 (X) < 1 + 2
n−1 if and

only if X is switching equivalent to the complete graph, denoted by Kn.

Corollary 3.6. Let X be a graph on n vertices. Then e∞n (X) = 2 if and only X
is switching equivalent to the empty graph, denoted by En.

The authors used Maple 11, [11], to compute infinity norms for arbitrary graphs.
These computations were used for the following theorem and example.

Theorem 3.7. Let X1 and X2 be graphs on n vertices with n ≤ 5. Then X1 and
X2 are switching equivalent if and only if e∞m (X1) = e∞m (X2) for 3 ≤ m ≤ n.

Proof. The cases of n = 1 and n = 2 are clear since there is only one switching
equivalence class. For n = 3, recall from Example 2.4 that there are exactly two
switching equivalent classes. Corollaries 3.5 and 3.6 give that e∞3 has different
values for these two classes.

In the case n = 4, Example 2.5 shows that there are exactly 3 switching equiv-
alent classes. Again, using Corollaries 3.5 and 3.6, the graphs switching equivalent
to the complete graph and the graph with no edges are identified. The other graphs
are all switching equivalent and are in the remaining class.

When n = 5, Corollaries 3.5 and 3.6 are not enough to identify all of the classes.
We still use these corollaries to distinguish the classes of the complete graph and
the graph with no edges. By explicit computation, the remaining graphs form five
switching equivalent classes. The representatives and infinity norm values for these
classes are given in Table 2.

�

Example 3.8. This example shows that Theorem 3.7 fails for n ≥ 6. The following
graphs are not switching equivalent.
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Representative ◦
◦

◦

◦ ◦

HHHH ◦
◦

◦

◦ ◦

HHHHvvvv
◦

◦
◦

◦ ◦

HHHH

)))) ◦
◦

◦

◦ ◦

HHHHvvvv

)))) ◦
◦

◦

◦ ◦

HHHHvvvv

e∞3 (X) 3
2

3
2

3
2

3
2

3
2

e∞4 (X) 7
4

7
4 1 +

√
5

4 1 +
√

5
4 1 +

√
5

4

e∞5 (X) 9
8 +

√
33
8

7
4

9
8 +

√
17
8 1 +

√
5

4
7
8 +

√
33
8

Table 2. Infinity norms for graphs on 5 vertices

◦
◦◦

◦
◦ ◦

111
MMMMMMqqqqqq ◦

◦◦
◦
◦ ◦

111
MMMMMMqqqqqq

111

X1 X2

Clearly, X1 is not isomorphic X2, and switching X1 on any subset τ of V (X1) will
not produce a graph isomorphic to X2. Consequently, these graphs are not switching
equivalent. Table 3.8 shows that e∞m does not distinguish the classes of these graphs.

m e∞m (X1) e∞m (X2)

3 1.4̄ 1.4̄

4 1.6̄ 1.6̄

5 1.6̄ 1.6̄

6 1.6̄ 1.6̄
Table 3. counter-example

4. Spectrum Determined Switching Equivalent Classes

As noted in Section 2, switching equivalent graphs have the same Seidel spec-
trum. A natural question is whether the switching equivalent class of a graph is
determined uniquely by its Seidel spectrum. In [18], van Dam and Haemers survey
the known results and open questions for graphs determined by their spectrum.
While graphs are not determined by their Seidel spectrum, the analogous question
about switching equivalent classes is not so obvious. The following result has been
verified by direct computation.

Theorem 4.1. For n ≤ 7, the graphs G and H on n vertices are switching equiv-
alent if and only if their Seidel matrices have the same spectrum.

Example 4.2. No pair of the following three graphs on eight vertices are switching
equivalent, yet their Seidel matrices all have the same spectrum.
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◦

◦◦

◦

◦

◦ ◦

◦

?????

������������
lllllllll

lllllllll

◦

◦◦

◦

◦

◦ ◦

◦

?????lllllllll

????? lllllllll

◦

◦◦

◦

◦

◦ ◦

◦

?????

lllllllllllll

���������
�����

?????

RRRRRRRRR �����
Y1 Y2 Y3

In addition to Example 4.2, there are six other pairs of switching equivalent
classes on eight vertices, each of which have the same Seidel spectrum. These
examples are the smallest number of vertices where this occurs. Seidel and others
have evidence of larger examples where nonswitching equivalent graphs have the
same spectrum.

Example 4.3. In [2], the authors make reference to four nonequivalent switching
classes on 26 vertices. This example is expanded in Section 7. The authors of [1]
state that these four classes have Seidel matrices which are conference matrices,
forcing them to have eigenvalues ±5, each with multiplicity 13. This implies that
they are Seidel cospectral.

5. Decks

The notion of the deck of a graph is a commonly used tool for attempting to
determine certain invariants of a graph from its collection of unlabeled induced
subgraphs see [10]. While the deck reconstruction problem has not been solved
for graphs in general, our work suggests that its analogue for switching equivalent
classes will hold.

Definition 5.1. A vertex-deleted subgraph of a graph G is a subgraph Gv
obtained by deleting a vertex v and its incident edges. The deck of a graph G,
denoted D(G), is the family of unlabeled vertex-deleted subgraphs of G; these are
called the cards of the deck.

Definition 5.2. Let G and H be graphs on the same number of vertices. We
say their decks are isomorphic, denoted D(G) ∼= D(H), if there exists a bijection
π : D(G) → D(H) such that π(x) ∼= x. In this case, we call H a reconstruction
of G. Similarly, we define the notion of switching equivalent decks, denoted by
D(G) ∼ D(H), in which case the bijection π satisfies π(x) ∈ [[x]].

If every reconstruction of G is isomorphic to G, we say G is reconstructible. The
reconstruction conjecture as stated in [10] is:

Conjecture 1. Every graph with at least three vertices is reconstructible.

We call the switching equivalent class [[H]] reconstructible if D(G) ∼ D(H)
implies that G ∈ [[H]]. This leads to our switching equivalent reconstruction con-
jecture.

Conjecture 2. Every switching equivalent class on at least 4 vertices is recon-
structible.

A positive result for Conjecture 1 would prove Conjecture 2. However, these con-
jectures are not equivalent. Also, many of the classes of graphs for which Conjecture
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1 is known, i.e. disconnected graphs, regular graphs, etc., can not be considered
under Conjecture 2 since their defining properties are not preserved by switching.

Revisiting the counterexamples from the previous sections, we see that decks
differentiate the switching equivalent classes.

Example 5.3. Consider the graphs from Example 3.8. The graphs X1 and X2 on
six vertices are not switching equivalent, and yet e∞m (X1) = e∞m (X2) for 1 ≤ m ≤ 6.

◦
◦◦

◦
◦ ◦

111
MMMMMMqqqqqq ◦

◦◦
◦
◦ ◦

111
MMMMMMqqqqqq

111

X1 X2

The deck of X1 consists of the graphs

◦
◦

◦

◦ ◦

HHHHvvvv
◦

◦
◦

◦ ◦

HHHH

vvvvvv
vvvv

))))

X1
1 X2

1

where X1
1 appears 4 times and X2

1 appears twice. Switching X1
1 on its vertices of

even degree gives X2
1 , which is an Euler graph. The deck of X2 consists of the

graphs

◦
◦

◦

◦ ◦

HHHHvvvv

)))) ◦
◦

◦

◦ ◦

HHHHvvvv

)))) ◦
◦

◦

◦ ◦

HHHHvvvv
◦

◦
◦

◦ ◦

HHHH
))))

X1
2 X2

2 X3
2 X4

2

where X1
2 and X4

2 appear once, and X2
2 and X3

2 each appear twice. Switching X3
2

on its even degree vertices gives a graph isomorphic to X2
1 , but none of the other

graphs in this deck are switching equivalent to X2
1 by Corollary 2.8. Therefore,

D(X1) � D(X2).

Example 5.4. Consider the three graphs from Example 4.2. For ease of reading,
the following decks have already been switched to their Euler graph representatives
using Theorem 2.6. The deck of Y1 contains the following graphs

◦
◦

◦

◦

◦ ◦

◦nnnnnnnnnnnnn

�������������

����������
nnnnn

9999999999

99999

PPPPPPPPPP

◦
◦

◦

◦

◦ ◦

◦

PPPPP

����������
nnnnn

����������

�������������

�����

&&&&&&&&&&

PPPPPPPPPPPPP

PPPPPPPPPP nnnnnnnnnn

�����

◦
◦

◦

◦

◦ ◦

◦nnnnnnnnnnnnn

&&&&&nnnnn

����������

&&&&&&&&&&&&&

9999999999

�����

�����
Y 1

1 Y 2
1 Y 3

1

with Y 1
1 and Y 2

1 each occurring 3 times and Y 3
1 occurring twice. The deck of Y2

contains the following graphs

◦
◦

◦

◦

◦ ◦

◦nnnnnnnnnnnnn

�������������

&&&&&&&&&&&&&

9999999999

&&&&&&&&&&

PPPPPPPPPPPPP

99999

◦
◦

◦

◦

◦ ◦

◦

PPPPP

nnnnnnnnnnnnn

&&&&&nnnnn

�������������

&&&&&&&&&&&&&

�����

9999999999999

99999

PPPPPPPPPP nnnnnnnnnn

◦
◦

◦

◦

◦ ◦

◦

PPPPP

����������

����������

�������������

&&&&&&&&&&&&&

�����

9999999999999

99999

PPPPPPPPPP

◦
◦

◦

◦

◦ ◦

◦nnnnnnnnnnnnn

�������������
nnnnn

����������

�������������

9999999999

&&&&&&&&&&

99999 nnnnnnnnnn

�����
Y 1

2 Y 2
2 Y 3

2 Y 4
2
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with Y 1
2 and Y 2

2 each occurring 3 times and Y 3
2 and Y 4

2 each occurring once. The
deck of Y3 contains the following graphs

◦
◦

◦

◦

◦ ◦

◦

PPPPP

nnnnnnnnnnnnn

�������������

����������

&&&&&nnnnn

����������

&&&&&&&&&&&&&

99999

PPPPPPPPPP �����

◦
◦

◦

◦

◦ ◦

◦

PPPPP

�������������

����������
nnnnn

�������������

&&&&&&&&&&&&&

�����

PPPPPPPPPPPPP

PPPPPPPPPP nnnnnnnnnn

◦
◦

◦

◦

◦ ◦

◦

PPPPP

�������������

�������������

�����

9999999999999

99999 nnnnnnnnnn

�����
Y 1

3 Y 2
3 Y 3

3

with Y 1
3 occurring twice and Y 2

3 and Y 3
3 each occurring three times. By quick

inspection and Corollary 2.8, no pair of these three decks is switching equivalent.

Examples 5.3 and 5.4 show that decks differentiate switching equivalent classes
in cases where the infinity norm and Seidel spectrum do not. Using programs
written in GAP, [5], representatives for the switching equivalent classes have been
constructed for 4 ≤ n ≤ 10 vertices. Additional programs in GAP have verified
Conjecture 2 for these representatives.

Conjecture 2 can be rewritten as a test of switching equivalence as follows.

Conjecture 3. Let X1 and X2 be graphs on n vertices. Then X1 and X2 are
switching equivalent if and only if D(G) ∼ D(H).

6. One Norms

While decks seem to differentiate switching equivalent classes of graphs, there is
another candidate which is more strongly tied to our motivation, as described in
Appendix A.

Definition 6.1. Let Dm denote the set of diagonal matrices that have exactly m
diagonal entries equal to one and n−m entries equal to zero. Given a graph X on
n vertices, set

e1m(X) :=
(
n

m

)−1 ∑
D∈Dm

‖D(I + cS)D‖,

where S is the Seidel adjacency matrix of X, c = 1
n−1 , and the norm of the matrix

is understood to be the operator norm.

The 1-norm is related to the infinity norm defined in Section 3 since it is an
average of the same list of numbers of which the infinity norm was returning the
maximum. Another way to think about the 1-norm is to consider all induced
subgraphs of X on m vertices. This collection of subgraphs can be partitioned
according to their infinity norms. The computation of e1m(X) follows from counting
the number of graphs in each element of the partition.

Example 6.2. Returning to Example 3.8, Table 3 is expanded to Table 4, giving the
1-norm values. In this case, where the infinity norm failed, the 1-norm differentiates
these classes of graphs.

As for the infinity norm, the authors implemented programs in Maple 11, [11],
to compute 1-norms of arbitrary graphs. Using the class representatives computed
in GAP, [5], the 1-norms have been calculated for all switching equivalent classes
on 4 ≤ n ≤ 10 vertices. The obtained results support the following conjecture.
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m e∞m (X1) e∞m (X2) e1m(X1) e1m(X2)

3 1.4̄ 1.4̄ 1.32 1.32

4 1.6̄ 1.6̄ 1.479 1.442

5 1.6̄ 1.6̄ 1.6̄ 1.52

6 1.6̄ 1.6̄ 1.6̄ 1.6̄
Table 4. counter-example

Conjecture 4. Let X1 and X2 be graphs on n vertices. Then, X1 and X2 are
switching equivalent if and only if e1m(X1) = e1m(X2) for 1 ≤ m ≤ n.

7. An Important Example

Since the 4 nonswitching equivalent classes on 26 vertices mentioned in Example
4.3 are well known and are a clear counterexample in the Seidel spectrum case,
we give the results of our conjectures applied to them here. We are grateful to
Spence for providing representatives for these classes in [16]. For the purposes of
this section, we refer to these four representatives as Q1, Q2, Q3, and Q4.

7.1. Decks. Using programs written in GAP, [5], the decks of these graphs are
quickly produced. To simplify checking switching equivalence for graphs on 25 ver-
tices, all of the cards are switched to their unique Euler representative as described
in Theorem 2.6. This gives four sets of 26 12-regular graphs on 25 vertices. Using
the GAP package GRAPE, [15], which relies on the C-program nauty, [13], the
isomorphism classes of these Euler graphs have been identified. By Corollary 2.8,
the isomorphism classes of the Euler representatives give the switching equivalent
classes of the cards in the deck. For two decks to be switching equivalent, there
have to be the same number of cards in each switching equivalent class. The graphs
Q1, Q2, Q3, and Q4 have 8, 1, 2, and 4 switching equivalent classes represented in
their decks, respectively. Therefore, Conjecture 3 holds for these four important,
see [1], switching equivalent classes on 26 vertices.

7.2. One Norms. The Interlacing Theorem gives evidence that the matrices Q1,
Q2, Q3, and Q4 are a good test for Conjecture 4.

Theorem 7.1 (The Interlacing Theorem). Let A be an n × n symmetric matrix
with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn,
and let B be obtained by removing the ith row and column of A and suppose B has
eigenvalues

µ1 ≥ µ2 ≥ · · · ≥ µn−1.

Then the eigenvalues of B interlace those of A, that is,

λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

A proof of Theorem 7.1 can be found in [10]. Since Q1, Q2, Q3, and Q4 all
have eigenvalues 5 and −5, each with multiplicity 13, Theorem 7.1 allows us to find
the values of e1m(Qi) without direct computation for 14 ≤ m ≤ 26. Recall from
Definition 6.1, 1-norms are averaged sums of ‖D(I + cX)D‖, where X is the Seidel
adjacency matrix, I is an identity matrix, and D is a matrix which deletes n −m
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rows and their corresponding columns. Applying the Interlacing Theorem, we get
that when n−m < 13, ‖D(I + 1

25Qi)D‖ = 1.2 for 1 ≤ i ≤ 4. So, e1m(Qi) = 1.2 for
14 ≤ m ≤ 26. This limited variation provides a good test for Conjecture 4.

We used our programs written in Maple 11, see [11], to evaluate the 1-norms for
these four classes. The results summarized in Table 5 show that Conjecture 4 holds
for these four important switching equivalent classes on 26 vertices.

m e1m(Q1) e1m(Q2) e1m(Q3) e1m(Q4)

3 1.06 1.06 1.06 1.06

4 1.0873899540482 1.0873899540482 1.0873899540482 1.0873899540482

5 1.1071147791905 1.1071399835086 1.1069232263711 1.1069433898254

6 1.1253569536629 1.1253899928320 1.1251058556967 1.1251322799265
Table 5. 26 Vertex Example

In light of our results, we feel that Conjectures 4 and 3 deserve further study.

Appendix A. Motivation and Frame Theory

In this section we give a brief introduction to frame theory in order to discuss
the motivation behind studying the qualities e∞m (X) and epm(X) for a given graph
X. Strohmer and Heath in [17] first introduced the frame theory community to
results in graph theory which yield examples of 2-uniform frames. In [8] and [1],
Bodmann, Holmes and Paulsen take advantage of the one-to-one correspondence
between regular two-graphs and 2-uniform frames to give a complete list of all
2-uniform (n, k)-frames for n ≤ 50.

Definition A.1. Let H be a Hilbert space, real or complex, and let F = {fi}i∈I ⊂ H
be a subset. Then, F is a frame for H provided that there are two constants
C, D > 0 such that the norm inequalities

C · ‖x‖2 ≤
∑
j∈I
|〈x, fj〉|2 ≤ D · ‖x‖2

hold for every x ∈ H. Here 〈·, ·〉 denotes the inner product of two vectors which is
by convention conjugate linear in the second entry if H is a complex Hilbert space.

When C = D = 1, then F is called a Parseval frame. A frame is called
uniform provided there is a constant c so that ‖f‖ = c for all f ∈ F .

The linear map V : H → l2(I) defined by

(V x)i = 〈x, fi〉
is called the analysis operator. When F is a Parseval frame, then V is an
isometry; and its adjoint, V ∗, acts as a left inverse of V .

For the purposes of this paper, H will be a finite dimensional real Hilbert space
and frames for these spaces will consist of finitely many vectors. If the dimension
of H is k, then we will identify H with Rk.

Definition A.2. Let F(n, k) denote the collection of all Parseval frames for Rk
consisting of n vectors and refer to such a frame as a real (n,k)-frame. Thus, a
uniform (n, k)-frame is a uniform Parseval frame for Rk with n vectors.
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The idea behind treating frames as codes is studied in depth in [8] and [1]. For
a more detailed study of uniform (n, k)-frames and 2-uniform (n, k)-frames see [1],
and for an excellent survey on frames see [3] or [9]. Given a vector x in Rk and an
(n, k)-frame with analysis operator V , consider the vector V x in Rn as an encoded
version of x, and simply decode V x by applying V ∗. Let E denote the diagonal
matrix of m zeros and n−m ones. Thus the vector EV x is just the vector V x with
m-components erased corresponding to the zeros in the diagonal entries of E. One
way to decode the received vector EV x with m erasures is to again apply V ∗. The
error in reconstructing x this way is given by

‖x− V ∗EV ‖ = ‖V ∗(I − E)V x‖ = ‖V ∗DV x‖
where D is the diagonal matrix of m ones and n − m zeros. This is only one of
several methods possible for reconstructing x. However, it is this particular method
which led Bodmann and Paulsen in [1] to introduce the following definition. The
first quantity in Definition A.3 represents the maximal norm of an error operator
given that some set of m erasures occurs, and the second quantity represents an
lp-average of the norm of the error operator over the set of all possible m erasures.

Definition A.3. Let Dm denote the set of diagonal matrices that have exactly m
diagonal entries equal to one and n−m entries equal to zero. Given an (n, k)-frame
F , set

e∞m (F ) := max{‖V ∗DV ‖ : D ∈ Dm},
and for 1 ≤ p,

epm(F ) =

{(
n

m

)−1 ∑
D∈Dm

‖V ∗DV ‖p
} 1

p

,

where V is the analysis operator of F , and the norm of the matrix is understood to
be the operator norm.

Definition A.4. F is called a 2-uniform (n,k)-frame provided that F is a uni-
form (n, k)-frame, and in addition ‖V ∗DV ‖ is a constant for all D in D2.

Theorem A.5 below is a restatement of Theorems 4.7 and 4.8 from [1]. It states
the one-to-one correspondence between regular two-graphs and 2-uniform frames
used to give a complete list of all pairs (n, k) for n ≤ 50 for which 2-uniform (n, k)
frames exist over the reals, together with what is known about the numbers of
frame equivalence classes. Unlike uniform frames, 2-uniform frames do not exist
for all values of k and n. However, 2-uniform frames turn out to be optimal for one
and two erasures when they do exist. Note that a complete list of all 2-uniform
frames over the complex field for n ≤ 50 is still not known.

Theorem A.5. The following are equivalent:
(1) Q is an n× n signature matrix of a real 2-uniform (n, k)-frame.
(2) Q is the Seidel adjacency matrix of a graph on n vertices with 2 eigenvalues

and in this case, k is the multiplicity of the largest eigenvalue.
(3) Q is the Seidel adjacency matrix of a graph on n vertices whose switching

class is a regular two-graph on n vertices with parameter α.

In [8], given a 2-uniform (n, k)-frame F with analysis operator V , Holmes and
Paulsen show that the projection P = V V ∗ can be written as

(1) P =
k

n
I + cn,kQ
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where Q satisfies the conditions qii = 0 and |qij | = 1 for i 6= j. Furthermore, Q has
precisely two eigenvalues and

(2) cn,k =

√
k(n− k)
n2(n− 1)

.

The projection matrix P is called the autocorrelation matrix of F , and the n × n
self-adjoint matrix Q is called the signature matrix of F . The rank of the projection
P is k where the eigenvalues 0 and 1 have multiplicities n − k and k respectively.
Note that the constant cn,k in equation (2) is such that cn,k = ‖V ∗DV ‖ for all D
in D2.

We are now ready to discuss the motivation for the definition of e∞m (X) and
e1m(X) stated in Sections 3 and 6. Consider an arbitrary 2-uniform (n, k)-frame F ,
the maximal norm of the error operator given that some set of m erasures occurs,
is given by the formulas,

e∞m (F ) = max{‖V ∗DV ‖ : D ∈ Dm}
= max{‖DV V ∗D‖ : D ∈ Dm}

= max{‖D(
k

n
I + cn,kQ)D‖ : D ∈ Dm} and

e∞m (F ) ≤ k

n
+ cn,k(m− 1),

with equality if and only if the corresponding graph XF contains an induced sub-
graph on m vertices that is complete bipartite or empty (Theorem 5.3 in [1]).

If Q is any signature matrix
k

n
I + cn,kQ =

k

n
(I +

1
|λ1|

Q)

where the constant λ1 = −
√

k(n−1)
n−k is the least eigenvalue of Q, then I + 1

|λ1|Q

is a positive operator. Thus, computing ‖V ∗DV ‖ is equivalent to computing the
largest eigenvalue of V ∗DV . However, given an arbitrary Seidel adjacency matrix,
S, it no longer makes sense to introduce k and cn,k. This is because the operator
k
nI + cn,kS need not be a projection, and more importantly, I + 1

|λ1|S need not be
a positive operator.

However, by Proposition 3.3, there is a constant c such that I + 1
cS is a positive

operator for any Seidel adjacency matrix S, and we can compute ‖D(I+ 1
cS)D‖ by

finding the largest eigenvalue of D(I + 1
cS)D. While cn,k is sufficient for making

In + cn,kQ a positive operator for any signature matrix Q, it is not sufficient for
making In + cn,kS a positive operator for any Seidel matrix S. This is what we
mean when we say that Definition 3.1 is a generalization of Definition A.3.
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