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Abstract. The set of possible values (w1, ..., wk) = (f(x1), ...,
f(xk)) arising from restricting contractive elements f from some
uniform algebra A to a finite set {x1, ..., xk} in the domain is called
an interpolation body. When the uniform algebra is the bidisk alge-
bra, Cole and Wermer show that the associated interpolation body
is a semi-algebraic set and it is in this sense that the interpolation
body is “computable”. Motivated by the work of Cole and Wer-
mer, Paulsen introduced the notion of the Schur ideal which acts
a natural “dual” object for these interpolation bodies. From this
“duality” a stronger notion of “computability” follows which will
allow us to discuss the intrinsic differences between interpolation
on the bidisk and interpolation on the disk.

1. Introduction

Let X be compact Hausdorff space and let C(X) denote the contin-
uous complex-valued functions on X. We call A ⊆ C(X) a uniform
algebra provided that A is uniformly closed, contains the identity, and
separates points in X. For fixed points x1, ..., xk in X, B. Cole, K.
Lewis, and J. Wermer in [5] define the interpolation body associated
with A and x1, ..., xk, denoted D(A; x1, ..., xk), in the following way:
a point ~w = (w1, ..., wk) in Ck belongs to D(A; x1, ..., xk) if for each
ε > 0, there exists f in A with ‖f‖∞ ≤ 1 + ε such that f(xi) = wi

for i = 1, ..., k. Equivalently, a point (w1, ..., wk) in Ck belongs to
D(A; x1, ..., xk) if ‖w1[f1] + . . . + wk[fk]‖ ≤ 1, where [fi] is in A/Ix,
fi(xj) = δij, and Ix is the ideal of functions in A vanishing at the
points x1, ..., xk. With this point of view, one can see that an inter-
polation body D(A; x1, ..., xk) is a natural coordinization of the closed
unit ball of the quotient algebra (k-idempotent operator algebra) A/Ix.

G. Pick solved the classic interpolation problem from D to D (open
unit disk) in 1916. In [11], G. Pick showed that (w1, ..., wk) in Ck is in

D(A(D); α1, ..., αk) if and only if the matrix
(

1−w̄iwj

1−ᾱiαj

)
is positive semi-

definite, where A(D) denotes the disk algebra. Note, that G. Pick’s
theorem yields the same set of finite conditions for determining if an
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arbitrary k-tuple (w1, ..., wk) in Ck belongs to D(A(D); α1, ..., αk). The
author would like to accentuate that the goal of this paper resides in
finding a finite (or possibly infinite) number of conditions which will
allow us to determine the ball D(A; x1, ..., xk) and more specifically the
ball D(A(D2); z1, ..., zk), where A(D2) denotes the bidisk algebra. It is
known for a fixed pair of k-tuples, say z1, ..., zk in D2 and w1, ..., wk

in C, that there exist finite methods for determining whether one can
interpolate the given pair of k-tuples (i.e, ∀ ε > 0 ∃ f ∈ A(D2) with
‖f‖∞ ≤ 1 + ε such that f(zi) = wi). For such constructions, see the
work of J. Ball and T. Trent [3] and/or the work of J. Agler and J.
McCarthy [2]. However, these finite methods yield unique sets of finite
conditions for distinct k-tuples, say (w1, ..., wk) and (w̃1, ..., w̃k) in Ck,
the target space. This is precisely the intrinsic difficulty we are referring
to with interpolation on the bidisk.

In [7], B. Cole and J. Wermer show that D(A(D2); z1, ..., zk) is a
semi−algebraic set (i.e, a set determined by a finite collection of poly-
nomial inequalities). Thus, one can determine if an arbitrary k-tuple
(w1, ..., wk) in Ck is inD(A(D2); z1, ..., zk) by checking a finite number of
polynomial inequalities (the same set of polynomial inequalities work
for each k-tuple). However, in proving that D(A(D2); z1, ..., zk) is a
semi-algebraic set B. Cole and J. Wermer appeal to an existential theo-
rem of A. Tarskie and A. Seidenberg and by doing so avoid the construc-
tion of the polynomial inequalities which determineD(A(D2); z1, ..., zk).

In this paper we will show that for three particular points z1, z2, z3 in
D2 that D(A(D2); z1, z2, z3) fails to be “computable” in a stricter sense,
namely, that the largest (affiliated) Schur ideal is not finitely gener-
ated. In section 2 we will describe tersely the motivation for studying
Schur ideals and make the terminology precise. In section 3 we will
bring forward the notion of an interpolation problem being “strongly
computable”, as well as, compare and contrast this new notion of com-
putability with the work of B. Cole and J. Wermer in [7]. In section 4
we will present an example which is not strongly computable by using
some results from V. Paulsen’s paper [9]. Last, in section 5 we will give
an alternate proof of J. Agler’s bidisk interpolation formula, [1], due to
V. Paulsen.

2. Preliminaries

Throughout the paper Mk will denote the k × k matrices with com-
plex entries and M+

k will denote the closed cone of positive semi-definite
matrices in Mk. If P is in Mk, then it will be understood that P is the
matrix (pij)

k
i,j=1 simply written as (pij). If P, Q are in Mk, then the



AN INTRINSIC DIFFICULTY WITH INTERPOLATION ON THE BIDISK 3

Schur product of the matrices P and Q, denoted as P ∗ Q, is defined
to be (pij) ∗ (qij) = (pijqij). The matrix P being positive semi-definite
will be denoted as P ≥ 0.

The following theorem is due to B. Cole and J. Wermer [6], in
which they give conditions on a point (w1, ..., wk) in Ck in order that
(w1, ..., wk) belong to the interpolation body D = D(A; x1, ..., xk) where
A ⊆ C(X) is an arbitrary uniform algebra and x1, ..., xk in X.

Theorem 1. (Cole-Wermer) If A ⊆ C(X) is a uniform algebra and
x1, ..., xk ∈ X, then there exists a set S ⊆ M+

k such that

(w1, ..., wk) ∈ D if and only if ((1− w̄iwj)pij) ≥ 0 for all (pij) ∈ S.

In [9], V. Paulsen observes that Theorem 1 suggests the following
“dualities” between subsets of the closed k-polydisk and subsets of
M+

k . Given a non-empty set S ⊆ M+
k define

S⊥ = {(w1, ..., wk) ∈ Ck : ((1− w̄iwj)pij) ≥ 0 ∀ (pij) ∈ S}.
Similarly, given a subset D of the closed k-polydisk with 0 ∈ D define

D⊥ = {(pij) : ((1− w̄iwj)pij) ≥ 0 ∀ (w1, ..., wk) ∈ D}.
Since we insist that 0 ∈ D then D⊥ is always a set of positive semi-
definite matrices. Observing further that the set D⊥ has certain prop-
erties, V. Paulsen [9] introduces the concept of a Schur ideal, defined
below. By studying this duality between hyperconvex sets and Schur
ideals and using some results from the theory of abstract operator
algebras, V. Paulsen is able to generalize J. Agler’s scalar-valued inter-
polation results [1] for the bidisk to more general product domains [9].
For another approach to such problems see the paper of A. Tomerlin
[14].

Definition 1. Let I ⊆ Mk
+ be a non-empty set. Then I will be called

a Schur ideal provided that:

(1) A, B ∈ I ⇒ A + B ∈ I.
(2) A ∈ I, P ∈ Mk

+ ⇒ A ∗ P ∈ I.

If D is a subset of the closed k-polydisk with 0 ∈ D, then D⊥ is a
Schur ideal. A consequence of Theorem 1 is that if D = D(A; x1, ..., xk),
then D = D⊥⊥.

Definition 2. A Schur ideal I ⊆ M+
k is said to be finitely generated

provided that there exist P1, ..., Pm ∈ M+
k such that

I = 〈P1, ..., Pm〉 = {
m∑

i=1

Pi ∗Ri : Ri ∈ M+
k }.
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Definition 3. Let A ⊆ C(X), x1, ..., xk ∈ X, and I ⊆ M+
k be a Schur

ideal. Then the Schur ideal I is said to be affiliated with the inter-
polation body D(A; x1, ..., xk) associated with A and x1, ..., xk provided
that I⊥ = D(A; x1, ..., xk).

Another consequence of Theorem 1 is that each interpolation body
D(A; x1, ..., xk) has an affiliated Schur ideal, namely D(A; x1, ..., xk)

⊥.
Note, we have that 〈( 1

1−ᾱiαj
)〉 is the unique affiliated Schur ideal for the

interpolation body D(A(D); α1, ..., αk), [13]. In Definition 3 we could
have easily defined the notion of an affiliated set instead of an affili-
ated Schur ideal. However, the interpolation bodyD(A(D); α1, ..., αk)
has infinitely many affiliated sets.

3. Semi-algebraic vs. Strongly Computable

In this section we will introduce the notion of an interpolation prob-
lem being “strongly computable” as well as compare and contrast this
new notion with the work of B. Cole and J. Wermer in [7].

Throughout this section we will assume that D = D(A; x1, ..., xk)
for some uniform algebra A and for fixed points x1, ..., xk in X. This
assumption will allow us to make use of the fact that D⊥⊥ = D.

Definition 4. A Schur ideal I is said to be affiliated with the set D
provided that

I⊥ = D.

One can verify that if I is any other affiliated Schur ideal with respect
to the set D, then I ⊆ D⊥. In this sense, D⊥ is the largest affiliated
Schur ideal with respect to the set D. This motivated the following
definition.

Definition 5. The set D is strongly computable provided that D⊥

is a finitely generated Schur ideal.

Remark: If D is stongly computable, then ∃ P1, ..., Pm ∈ M+
k such

thatD⊥ = 〈P1, ..., Pm〉. Let (w1, ..., wk) ∈ Ck and consider the following
implications:

(1− w̄iwj) ∗ Pl ≥ 0 =⇒ ∀ Q ∈ M+
k , (1− w̄iwj) ∗Q ∗ Pl ≥ 0

for l = 1, ...,m for l = 1, ...,m

=⇒ ∀ Q1, ..., Qm ∈ M+
k ,

(1− w̄iwj) ∗
m∑

l=1

Ql ∗ Pl ≥ 0

=⇒ ∀ P ∈ D⊥, (1− w̄iwj) ∗ P ≥ 0.
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Since D⊥⊥ = D we have that (w1, ..., wk) ∈ D. Thus, if D⊥ is finitely
generated, then it is sufficient to check finitely many positivity condi-
tions to determine if (w1, ..., wk) ∈ D.

It turns out that, if D = D(A(D); α1, ..., αk), then D⊥ =
〈(

1
1−ᾱiαj

)〉
,

see Proposition 4 in section 4. Hence, D = D(A(D); α1, ..., αk) is
strongly computable. Moreover, if I is any other Schur ideal affiliated

with D = D(A(D); α1, ..., αk), then I is the Schur ideal
〈(

1
1−ᾱiαj

)〉
,

see [13]. However, for a general uniform algebra A, it is still not known
whether I⊥ = D(A; x1, ..., xk) implies that I = D(A; x1, ..., xk)

⊥; we
leave this issue for future work. In section 4 we will show that for three
particular points z1, z2, z3 in D2 that the ball D(A(D2); z1, z2, z3) is not
strongly computable.

B. Cole and J. Wermer prove the following theorem in [7].

Theorem 2. (Cole-Wermer) If z1 = (α1, β1), ..., zk = (αk, βk) ∈ D2,
then D(A(D2); z1, ..., zk) is a semi-algebraic set in Ck.

Loosely speaking, a set X ⊆ Rk is semi-algebraic provided that X
is determined by a finite collection of polynomial inequalities (for a brief
exposition of the theory of semi-algebraic sets see [7]). Thus, despite
our example where D(A(D2); z1, z2, z3) is not strongly computable, it
seems plausible to assume that there may exists a finitely generated
Schur ideal, say I, such that I ⊆ D⊥ and I⊥ = D(A(D2); z1, z2, z3).
This was the motivation behind the next definition.

Definition 6. The set D is said to be computable provided there
exists a finitely generated Schur ideal I0 with I⊥0 = D.

Clearly, if a set D is strongly computable, then the set D is com-
putable. In the next proposition we will show that if a set D is com-
putable, then the set D is semi-algebraic.

Proposition 3. If D is computable, then D is a semi-algebraic set.

Proof: We note that a matrix P ∈ Mk is positive semi-definite [8]
if and only if P = P ∗ and the principal minors of P are non-negative,
where the principal minors of P are the scalars ∆l(P ) defined by

∆l(P ) = det

 p11 . . . p1l
...

...
pl1 . . . pll

 , 1 ≤ l ≤ k.

The set D being computable implies that there exists a finitely gener-
ated Schur ideal I0 with I⊥0 = D. Thus, we can choose P1, ..., Pm ∈ M+

k
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such I0 = 〈P1, ..., Pm〉. But,

(w1, ..., wk) ∈ D ⇐⇒ ((1− w̄iwj)p
l
ij) ≥ 0, for l = 1, ...,m,

⇐⇒ ∆1((1− w̄iwj)p
l
ij) ≥ 0, for l = 1, ...,m

∆2((1− w̄iwj)p
l
ij) ≥ 0, for l = 1, ...,m

...

∆k((1− w̄iwj)p
l
ij) ≥ 0, for l = 1, ...,m.

Thus, the real polynomials ∆l
n(w1, ..., wk, w̄1, ..., w̄k) for n = 1, ..., k and

l = 1, ...,m determine the set D. Hence the set D is semi-algebraic in
Ck. 2

We mentioned previously that D⊥ is the largest affiliated Schur ideal
with respect to the set D. Thus, if D⊥ is finitely generated, then the set
D is semi-algebraic. Hence, a set being strongly computable (and/or
computable) is a stricter notion of computability than a set being semi-
algebraic.

4. Example

In this section we will show that for three particular points z1, z2, z3 in
D2 that the interpolation body D(A(D2); z1, z2, z3) is not strongly com-
putable. Proving that D(A(D2); z1, z2, z3)

⊥ is infinitely generated does
not rely on any particularly deep theorems in analysis but is rather
a straight forward argument. The subtlety lies in determining what
form the Schur ideal D(A(D2); z1, z2, z3)

⊥ takes. Theorem 5 below,
does exactly that for any fixed set of points z1, ..., zk in D2, where k
is arbitrary. Theorem 5 is a special case of a more general theorem,
due to V. Paulsen in [9]. Theorem 5 does even more than tell us
what form D(A(D2); z1, z2, z3)

⊥ takes! By using some elementary facts
about dual cones and a factorization theorem for polynomials in two
complex-variables we will see in section 5 that J. Agler’s bidisk interpo-
lation formula [1] follows as a corollary to Theorem 5 quite naturally.
We will begin this section with a proposition about Pick bodies (i.e,
D(A(D); α1, ..., αk)).

Proposition 4. Let α1, ..., αk ∈ D. Then〈(
1

1− ᾱiαj

)〉
= D(A(D); α1, ..., αk)

⊥ =

{(
1

1− ᾱiαj

)}⊥⊥
.

The proof of Proposition 4 will be omitted. However, the key in-
gredient in proving Proposition 4 is Pick’s theorem. Note, throughout
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the remainder of the paper we will often interchange
〈(

1
1−ᾱiαj

)〉
with

D(A(D); α1, ..., αk)
⊥ and vice versa when convenient.

Theorem 5. (Paulsen) Let z1 = (α1, β1), ..., zk = (αk, βk) ∈ D2. Then

D(A(D2); z1, ..., zk) =

(〈(
1

1− ᾱiαj

)〉
∩
〈(

1

1− β̄iβj

)〉)⊥
.

A proof of Theorem 5 will be provided in section 5.

Theorem 6. Let z1 = (0, 0), z2 = ( 1√
2
, 0), z3 = (0, 1√

2
). Then the Schur

ideal

D(A(D2); z1, z2, z3)
⊥ =

〈 1 1 1
1 2 1
1 1 1

〉⋂〈 1 1 1
1 1 1
1 1 2

〉

is infinitely generated.

Corollary 7. The set D(A(D2); (0, 0), ( 1√
2
, 0), (0, 1√

2
)) is not strongly

computable.

This example exhibits the intrinsic difference between interpolation
on D2 and interpolation on D (i.e, D(A(D); α1, ..., αk)

⊥ is necessarily
finitely generated and D(A(D2); z1, ..., zk)

⊥ is not necessarily finitely
generated). However, D(A(D2); (0, 0), ( 1√

2
, 0), (0, 1√

2
)) may be com-

putable since D(A(D2); z1, ..., zk) is necessarily a semi-algebraic set [7];
we leave this issue for future work.

We will need three lemmas in order to prove Theorem 6. The proofs
of the first two lemmas will be omitted since they are straight ahead
calculations. Throughout the remainder of this section z1 = (0, 0), z2 =
( 1√

2
, 0), and z3 = (0, 1√

2
).

Lemma 1. If θ ∈ [0, 2π], then Sθ ∈ D(A(D2); z1, z2, z3)
⊥ where

Sθ =

 1 1√
3

1√
3

1√
3

1 1+eiθ

3
1√
3

1+e−iθ

3
1

 .

Lemma 2. Let P = (pij)
3
i,j=1 ≥ 0. Let

v1 =

 1−2eiθ
√

3

2eiθ

−1

 and v2 =

 2−eiθ
√

3

eiθ

−2

 , for a fixed θ.
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If

 1 1 1
1 1/2 1
1 1 1

 ∗ Pv1 = 0 and

 1 1 1
1 1 1
1 1 1/2

 ∗ Pv2 = 0, then

P = tSθ where t ≥ 0 and Sθ =

 1 1√
3

1√
3

1√
3

1 1+eiθ

3
1√
3

1+e−iθ

3
1

 .

Lemma 3. Let Q1, ..., Qm ∈ D(A(D2); z1, z2, z3)
⊥ and

Sθ =
m∑

i=1

Pi ∗Qi

where P1, ..., Pm ≥ 0. Then Pi∗Qi = tiSθ where ti ≥ 0 for i = 1, ...,m.

Proof:

Sθ =
m∑

i=1

Pi ∗Qi =⇒

 1 1 1
1 1/2 1
1 1 1

 ∗ Sθ =
m∑

i=1

 1 1 1
1 1/2 1
1 1 1

 ∗ Pi ∗Qi

and

 1 1 1
1 1 1
1 1 1/2

 ∗ Sθ =
m∑

i=1

 1 1 1
1 1 1
1 1 1/2

 ∗ Pi ∗Qi.

Now for i = 1, ...,m we will let

Ri =

 1 1 1
1 1/2 1
1 1 1

 ∗ Pi ∗Qi and Ti =

 1 1 1
1 1 1
1 1 1/2

 ∗ Pi ∗Qi.

For i = 1, ...,m each Qi ∈ D(A(D2); z1, z2, z3)
⊥ =⇒ ∃ Ui ≥ 0 such that

Qi = Ui ∗

 1 1 1
1 2 1
1 1 1

 .

Hence, Ri = Pi ∗ Ui ≥ 0, for i = 1, ...,m. Similarly, Ti ≥ 0, for i =
1, ...m. Let v1, v2 be as in Lemma 2. Then 1 1 1

1 1/2 1
1 1 1

 ∗ Sθv1 = 0 and

 1 1 1
1 1 1
1 1 1/2

 ∗ Sθv2 = 0.
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But this implies〈
m∑

i=1

Riv1, v1

〉
= 0 =⇒ Riv1 = 0 for i = 1, ...,m(1)

and〈
m∑

i=1

Tiv2, v2

〉
= 0 =⇒ Tiv2 = 0 for i = 1, ...,m.(2)

Thus, by Lemma 2 and (1), (2) above we have that Pi ∗Qi = tiSθ and
ti ≥ 0 for i = 1, ..., k. Note, that

∑m
i=1 ti = 1. 2

Proof: (Theorem 6) Suppose thatD(A(D2); z1, z2, z3)
⊥ is finitely gen-

erated. Then there exists Q1, ..., Qm ∈ M+
3 , such thatD(A(D2); z1, z2, z3)

⊥

= 〈Q1, ..., Qm〉 . For each θ ∈ [0, 2π] we can choose P1, ..., Pm ≥ 0 such
that

Sθ =
m∑

i=1

Pi ∗Qi, =⇒ Pi ∗Qi = tiSθ, ti ≥ 0 and
m∑

i=1

ti = 1,

for i = 1, ...,m (Lemma 3),

=⇒ ∃ k ∈ {1, ...,m} such that tk 6= 0,

=⇒ Sθ = t−1
k Pk ∗Qk.

Therefore, for all θ ∈ [0, 2π], there exists kθ ∈ {1, ...,m} and Rθ ≥ 0
such that

Sθ = Rθ ∗Qkθ
.

Note, if θ 6= π, then Qkθ
has all non-zero entries. Now, define Γk =

{θ : kθ = k} for k = 1, ...,m. Since the Γk′s cover the unit circle, we can
choose ko ∈ {1, ...,m} and {θn} ⊆ Γko such that θn −→ π as n −→ ∞
and for each n ∈ N, θn 6= π. Thus, for each n ∈ N we can choose
Rn ≥ 0 such that

Sθn = Rn ∗Qko .

The fact that there exists an n ∈ N such that θn 6= π implies that
Qko = (qko

ij ) has all non-zero entries. Thus, we can define

Q̂ko =

(
1

qko
ij

)
.

But for each n ∈ N we have that Sθn = Rn ∗Qko , this implies for each

n ∈ N that Rn = Q̂ko ∗ Sθn and

Sθn −→ Sπ as n −→∞ =⇒ Rn −→ Rπ as n −→∞,

=⇒ Sπ = Rπ ∗Qko .
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Since Qko has all non-zero entries we may assume that

Qko =

 1 a b
ā 1 z
b̄ z̄ 1

 , where a, b, z ∈ C.

But Qko ∈ D(A(D2); z1, z2, z3)
⊥ implies that the following two matrices 1 a b

ā 1
2

z
b̄ z̄ 1

 and

 1 a b
ā 1 z
b̄ z̄ 1

2


are positive semi-definite. Thus, |a|2 ≤ 1

2
and |b|2 ≤ 1

2
. We also have

that

Sπ =

 1 1√
3

1√
3

1√
3

1 0
1√
3

0 1

 =⇒ Rπ =

 1 1
a
√

3
1

b
√

3
1

ā
√

3
1 0

1
b̄
√

3
0 1

 .

Thus, we have the following two implications,

Rπ ≥ 0 =⇒ 1− 1

3|a|2
− 1

3|b|2
≥ 0 and(3)

|a|2 ≤ 1

2
=⇒ 1

3|a|2
≥ 2

3
.(4)

But (3) and (4) imply that |b|2 ≥ 1, which contradicts the fact that
|b|2 ≤ 1

2
. Hence, D(A(D2); z1, z2, z3)

⊥ is not finitely generated. 2

5. Agler’s Bidisk Interpolation Formula

In this section we will first state a factorization theorem for polyno-
mials in two complex variables with norm strictly less than 1, due to
D. Blecher and V. Paulsen [4]. This theorem together with the matrix-
valued version of Pick’s theorem ,[12], and the fact that D⊥⊥ = D
for an arbitrary interpolation body will enable us to prove Theorem 5.
Again, Theorem 5 is a special case of a more general theorem in [9].
The proof of Theorem 5 is much simpler than the proof of the general
theorem and is due to V. Paulsen.

Following the proof of Theorem 5 are two corollaries (9 and 10)
which follow from Theorem 5 (not Theorem 8). We will omit the proof
of Corollary 9 (V. Paulsen’s bidisk interpolation formula) and before
proving Corollary 10 (J. Agler’s bidisk interpolation formula) we will
discuss how the two corollaries tell us when we can or can’t interpolate
two sets of k-tuples. We will then recall some elementary facts about
dual cones and end the paper with an alternate proof of J. Agler’s
bidisk interpolation formula, due to V. Paulsen.
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Theorem 8. (Blecher-Paulsen) Let p(α, β) be a polynomial in two
complex-variables with ‖p‖ = sup{|p(α, β)| : |α|, |β| ≤ 1} < 1. Then p
factors as follows:

p(α, β) = F1(α)G1(β)F2(α)G2(β) . . . Fm(α)Gm(β)

1× l1 l1 × l2 l2 × l3 l3 × l4 . . . l2m−1 × 1

where ‖Fi‖, ‖Gi‖ < 1 ∀i and entries of Fi and Gi are polynomials.

Proof: (Theorem 5) Let D = D(A(D2); z1, ..., zk), where zi = (αi, βi).
Looking at functions constant in β implies that D(A(D); α1, ..., αk) ⊆
D which implies that D⊥ ⊆ D(A(D); α1, ..., αk)

⊥. Similarly, D⊥ ⊆
D(A(D); β1, ..., βk)

⊥. Therefore,

D⊥ ⊆ D(A(D); α1, ..., αk)
⊥ ∩ D(A(D); β1, ..., βk)

⊥

which implies that

(〈(
1

1− ᾱiαj

)〉
∩
〈(

1

1− β̄iβj

)〉)⊥
⊆ D⊥⊥ = D.

To show the other containment let Q = (qij) ∈ D(A(D); α1, ..., αk)
⊥∩

D(A(D); β1, ..., βk)
⊥ and let p(α, β) be a polynomial such that ‖p‖ < 1.

Let wi = p(αi, βi) and suppose ((1− w̄iwj)qij) ≥ 0. Then we have the
following:

((1− w̄iwj)qij) ≥ 0 ⇒ (qij) ∈ D⊥

⇒ D(A(D); α1, ..., αk)
⊥ ∩ D(A(D); β1, ..., βk)

⊥

⊆ D⊥

⇒ D⊥⊥ = D
⊆ (D(A(D); α1, ..., αk)

⊥ ∩ D(A(D); β1, ..., βk)
⊥)⊥.

Thus, we need only prove that ((1−w̄iwj)qij) ≥ 0. Assume p(α, β) =
F (α)G(β).

1− w̄iwj = 1− p(αi, βi)p(αj, βj)

= 1−G∗(βi)F
∗(αi)F (αj)G(βj)

= 1−G∗(βi)G(βj) + G∗(βi)[I − F ∗(αi)F (αj)]G(βj)
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Now Schur product (1 − w̄iwj) with (qij) where (qij) =
(

p1
ij

1−ᾱiαj

)
or

(qij) =
(

p2
ij

1−β̄iβj

)
where (p1

ij), (p
2
ij) ≥ 0, to get

((1− w̄iwj)qij) = ((1−G∗(βi)G(βj))qij)

+(G∗(βi)[(I − F ∗(αi)F (αj))qij]G(βj))

=

(
1−G∗(βi)G(βj)

1− β̄iβj

p2
ij

)
+

(
G∗(βi)

[
I − F ∗(αi)F (αj)

1− ᾱiαj

p1
ij

]
G(βj)

)
≥ 0.

To prove the above inequality we are using three separate facts. First,
we are using the matrix-valued version of Pick’s theorem [12]. Next,
we are using two facts from matrix analysis. First, the Schur product
of two positive semi-definite matrices is positive semi-definite and if P
is positive semi-definite, then X∗PX is positive semi-definite for X ∈
Mk,m, m arbitrary [8]. Now, by induction on p(αi, βi) = F (αi)H(αi, βi),
where H(αi, βi) has n− 1 factors, we are done. 2

Now that we have proven Theorem 5 the following corollaries follow
easily.

Corollary 9. (Paulsen) Let z1 = (α1, β1), ..., zk = (αk, βk) ∈ D2 and
w1, ..., wk ∈ D. Then (w1, ..., wk) ∈ D(A(D2); z1, ..., zk) if and only if
(1− w̄iwj) ∗Q ≥ 0 ∀ Q satisfying

(1) (1− ᾱiαj) ∗Q ≥ 0,
(2)

(
1− β̄iβj

)
∗Q ≥ 0.

Corollary 10. (Agler) Let z1 = (α1, β1), ..., zk = (αk, βk) ∈ D2 and
w1, ..., wk ∈ D. Then (w1, ..., wk) ∈ D(A(D2); z1, ..., zk) if and only if
there exists positive semi-definite matrices P and Q such that

(1− w̄iwj) = ((1− ᾱiαj)pij) + ((1− β̄iβj)qij).

The above two corollaries tell us the following. If one chooses the
correct P, Q ≥ 0 satisfying

(1− w̄iwj) = ((1− ᾱiαj)pij) + ((1− β̄iβj)qij),

then J. Agler’s formula tells us we can interpolate (z1, ..., zk) and
(w1, ..., wk). However, one would have to exhaust an infinite number
of possible P, Q ≥ 0 to show one can’t interpolate (w1, ..., wk) using
Corollary 10.

Conversely, suppose Q satisfies

(1− ᾱiαj) ∗Q ≥ 0 and
(
1− β̄iβj

)
∗Q ≥ 0.
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If (1− w̄iwj)∗Q is not positive semi-definite, then V. Paulsen’s formula
tells us we can’t interpolate (w1, ..., wk). On the other hand, to show
that we can interpolate (w1, ..., wk) we would need to verify (1−w̄iwj)∗
Q ≥ 0 for all Q satisfying conditions (1) and (2) in Corollary 9. But
by Theorem 6 we have that for three particular points in the bidisk
that there are infinitely many Q′s satisfying conditions (1) and (2) in
Corollary 9.

Before proving Agler’s bidisk interpolation formula (Corollary 10)
we need to recall some facts about dual cones.

Given a set S let S+ = {y : 0 ≤ y · x ∀ x ∈ S}.
i) S+ is a cone
ii) S ⊆ S++

iii) S++ = cone(S) - smallest closed cone containing S (Krein-
Milman).

Theorem 11. Let C1 and C2 be closed cones. Then

(C1 ∩ C2)
+ = (C+

1 + C+
2 )−.

Consider the space of k× k Hermitian matrices Mh
k as a real Hilbert

space with pairing A � B =
∑k

i,j=1 aijbij = 〈A ∗ Be, e〉 where e is the

vector of all ones and 〈 , 〉 denotes the usual inner product on Ck.

Proposition 12. Let I ⊆ M+
k be a Schur ideal. Then I is a cone and

I+ = {H ∈ Mh
k : H � P ≥ 0 ∀ P ∈ I}

= {H ∈ Mh
k : H ∗ P ≥ 0 ∀ P ∈ I}.

Moreover, (w1, ..., wk) ∈ I⊥ if and only if (1− w̄iwj) ∈ I+.

We are now able to prove Agler’s bidisk interpolation formula.
Proof: (Corollary 10) Let D = D(A(D2); z1, ..., zk). By Theorem 5

D =

(〈(
1

1− ᾱiαj

)〉
∩
〈(

1

1− β̄iβj

)〉)⊥
.

But by Proposition 12

(w1, ..., wk) ∈ D ⇔ (1−w̄iwj) ∈
(〈(

1

1− ᾱiαj

)〉
∩
〈(

1

1− β̄iβj

)〉)+

.

But by Theorem 11(〈(
1

1− ᾱiαj

)〉
∩
〈(

1

1− β̄iβj

)〉)+

=

〈(
1

1− ᾱiαj

)〉+

+

〈(
1

1− β̄iβj

)〉+

.
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Next observe that〈(
1

1− ᾱiαj

)〉+

= {H ∈ Mh
k : H ∗

(
1

1− ᾱiαj

)
≥ 0}

= {(1− ᾱiαj) ∗ P : P ≥ 0}.
This completes the proof of Corollary 10.2
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