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Abstract. The space Hank of Hankel operators acting on the Hardy space
H2 is a module over H∞. There is a natural correspondence between weak*

closed submodules of Hank and individual inner functions, and we apply work

of V. Kapustin on Jordan models to characterize which submodules are reflex-
ive in terms of the canonical factorization of these functions. We also prove

that reflexivity of any weak* closed subspace of Hank is equivalent to reflex-

ivity of the largest H∞ module it contains. Analogous results are obtained in
the finite dimensional and “semi-infinite” dimensional settings.

1. Introduction

In [7], A. Beurling set up a correspondence between invariant subspaces of the
unilateral shift and inner functions. Applications in invariant subspace theory
proper have been most successful for operators enjoying a symbolic calculus over the
Hardy space H∞. In [26], D. Sarason showed the algebra AT of analytic Toeplitz
operators to be reflexive in the sense that any operator sharing its invariant sub-
spaces must in fact belong to AT . More recently, H∞ functional calculi played a
key role in Scott Brown’s proof of the intransitivity of subnormal operators [8] and
in joint work by H. Bercovici, S. Brown, and C. Pearcy establishing intransitivity
of each operator of norm one whose spectrum contains the unit circle [3].

A. Loginov and V. Shulman, in [18], generalized the notion of reflexivity to
operator spaces which are not necessarily closed under composition. The reflexive
closure of a linear space L of Hilbert space operators, denoted ref L, consists of
those operators B which belong to L locally in the sense that Bx belongs to the
norm closure of Lx for each vector x in the underlying Hilbert space. The space
L is reflexive if it coincides with its reflexive closure; at the opposite extreme,
L is transitive if every operator on the underlying Hilbert space belongs to its
reflexive closure. The concept of reflexivity of subspaces played an important spoiler
role in Warren Wogen’s celebrated paper [28] in which he imbedded recalcitrant
linear operators in singly–generated operator algebras, thereby solving several long
standing questions concerning reflexivity of individual operators.

Hankel (Toeplitz) matrices are defined by the property that their entries only
depend on the sum (respectively difference) of row and column number, i.e., they
are “constant on cross-diagonals (diagonals)”. The terms also refer to bounded
Hilbert space operators whose matrices relative to “standard” orthonormal bases
take this form. The best choice to make in the separable infinite-dimensional case is
the Hardy space H2, equipped with its usual basis consisting of powers of z. Via the
Nehari map, the space Hank of all Hankel operators on H2 is linearly isometrically
isomorphic and weak* homeomorphic to L∞/(zH∞), the Banach space dual of H1.

In [2], the first author and M. Ptak showed that each weak* closed linear space
of (not necessarily analytic) Toeplitz operators is either reflexive or transitive and
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there are many of each type. By way of contrast, the first result of the present
paper implies that no proper weak* closed subspace of Hank can be transitive.

Proposition 1.1. Hank is transitive, but its subspaces are “relatively reflexive” in
the sense that each weak* closed subspace K of Hank satisfies Hank ∩ ref K = K.

Both Toeplitz and Hankel operators have L∞ symbols. Proposition 1.1 reflects
the crucial difference: for Hankel operators, the Hilbert space inner product

〈Hφf, g〉 =
1
2π

∫
φfg∗

involves the analytic function g∗ : z 7→ g(z). This means that studying reflexivity in
Hank relies on cataloguing the different ways to factor an H1 function as a product
of H2 functions, as opposed to the H2 ·H2 factorizations which underlie [2].

We next take up reflexivity of subspaces of Hank. Since reflexive closures are
always weak* closed, all subspaces of Hank discussed below will be assumed to be
closed in that topology. Given a subset N of H1, we define its companion space by

C(N) :=
{
Hφ :

∫
φu = 0 for each u ∈ N

}
.(1)

We will see that every weak* closed subspace of Hank is a companion space.
We will concentrate on two special companion spaces associated with an indi-

vidual element u of H1: the companion space Cu of the singleton set {u}, and the
companion space Mu of the set uH∞. Every hyperspace of Hank takes the for-
mer form, and Beurling’s Theorem will show that Mu represents the most general
(weak* closed) submodule of Hank.

Here is our main result. The proof, given in Section 5, does not depend on
Section 4; it is accomplished by carefully studying a preadjoint of the Nehari map
which sends trace class operators to H1 functions.

Theorem 1.2. Let N ⊂ H1, take W := C(N) to be the corresponding subspace of
Hank, and set θ as the greatest common divisor of the inner factors of the members
of N . Then ref W = W + ref Mθ.

To gauge the strength of this theorem, consider the special case when N consists
of a single outer function ω and thus W = Cω. In this case θ = 1 and Mθ = {0}
is trivially reflexive, hence the theorem above gives ref Cω = Cω. So even though
Cω is a hyperplane in the transitive space Hank, the theorem still guarantees its
reflexivity. More generally, Theorem 1.2 leads to equivalence of the first three
conditions in the following result.

Theorem 1.3. Let N ⊂ H1, take W := C(N) to be the corresponding subspace of
Hank, and set θ as the greatest common divisor of the inner factors of the members
of N . Then the following are equivalent:

(1) W is reflexive.
(2) Cθ is reflexive.
(3) Mθ is reflexive.
(4) S(θ) is reflexive.
(5) θ = βσ where β is a Blaschke product having no repeated roots while σ is

a singular inner function whose associated measure vanishes on Beurling-
Carleson sets.
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In particular, reflexivity of W is equivalent to reflexivity of the largest H∞ module
it contains.

The equivalence (3) iff (4) is established in Section 4. In connection with Condi-
tion (4), recall that if θ is an inner function and S is the unilateral shift operator on
H2 (i.e., multiplication by the independent variable z), the Jordan model operator
S(θ) is defined to be the compression of S to the space H2	 θH2. The equivalence
of (4) and (5) is due to V. Kapustin [16, 17].

In Section 6, we determine the finite-rank members of ref Mθ. These are absent
when θ is a totally nonatomic inner function, but plentiful in the opposite case that
the measure associated with the singular factor of θ is supported on a countable
set. This leads to a concrete computation of ref Mθ in the latter situation.

All Hankel and Toeplitz operators are compressions of multiplication operators.
So far, we have been discussing the so called “infinite” case of Hankel operators
in B(H2). We now describe our results in the “semi-infinite” and “finite” cases,
covered in the last two sections of the paper. (This less technical material can be
read immediately after Section 2.) One of the original motivations of the present
paper was the use of such settings to gain insight on the Toeplitz spaces studied in
[2]. In fact, the simple device of reversing the order of a finite orthonormal basis
shows reflexivity questions for spaces of Hankel and Toeplitz operators are entirely
equivalent in these settings.

Write Pn for the set of all polynomials with degree less than or equal to n,
thought of as a subspace of H2. Each of these spaces (including H2) is equipped
with a standard orthonormal basis, and a bounded operator acting between two of
them is considered to be Hankel if its matrix relative to the corresponding standard
bases is constant on skew diagonals. We write Hank(Pn,H2) for the space of
Hankel operators in B(Pn,H2) (the semi-infinite case) and Hank(Pn,Pm) for the
Hankel operators in B(Pn,Pm) (the finite case). These operators have symbols as
well, taken from H2 in the semi-infinite case, and from Pm+n in the finite case.
Companion spaces are defined as in Display (1), with N ranging over the subsets
of the corresponding preduals, H2 and Pn+m respectively.

Theorem 1.4. Suppose n > 0. Let N ⊂ H2, take M := C(N) to be the corre-
sponding subspace of Hank(Pn,H2), and set γ as the greatest common divisor of
the inner factors of the members of N . Then the following are equivalent:

(1) M is reflexive.
(2) Cγ is reflexive.
(3) γ is a Blaschke product without repeated roots.

The criteria in the next theorem are quite computable; one can check whether
r(z) has any repeated roots by applying the Euclidean algorithm to r and r′.

Theorem 1.5. Let N be a set of polynomials in Pm+n, take M := C(N) to be the
corresponding subspace of Hank(Pn,Pm), and set r = gcdN . Then the following
are equivalent:

(1) M is reflexive.
(2) M is contained in a reflexive hyperplane.
(3) Some member of N has degree ≥ m+n− 1 and r(z) has no repeated roots.

Note the contrast between the middle conditions of the last two theorems: the
hyperplane Cγ of 1.4 need not contain M; on the other hand, reflexivity of M in
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1.5 does not imply reflexivity of Cr. Proofs techniques are also different: 1.4 takes
advantage of the existence of a strictly cyclic vector for Hank(Pn,H2); that tool is
not available for 1.5 and we rely on a Theorem of Bertini instead.

2. Preliminaries

Hankel and Toeplitz Operators. We will concentrate on operators on the
Hardy–Hilbert space H2 (see [12, 13, 15] for further information on H2), but we
will use the letter H whenever we make a definition that is valid for general Hilbert
space. We think of H2 both as a space of analytic functions and as a subspace of
L2 := L2(T). We also think of the space L∞ as a subset of L2 and we define the
subspace H∞ of L∞ as L∞ ∩H2. The dual space of H1 is L∞/(zH∞) (see, for
example, [12, p. 161]), under the pairing

〈φ+ zH∞, u〉 :=
1
2π

∫ π

−π
φ(eiθ)u(eiθ) dθ, φ+ zH∞ ∈ L∞/(zH∞), u ∈ H1.

The (forward) shift operator S is defined on H2 as multiplication by the inde-
pendent variable z. This has the effect of shifting the Fourier coefficients forward
by one place (hence the name). Its adjoint, S∗, is usually called the backward shift
since it shifts the Fourier coefficients one place back. The flip operator J : L2 → L2,
defined by (Jf)(z) := f(z), interchanges analytic and coanalytic functions. If f is
a function in L2, we also define f∗ by f∗(z) = f(z); note that f∗ ∈ H2 if and only
f ∈ H2.

The main objects of study of this paper are Hankel operators. Most of the
following basic facts concerning them can be found in [22, 23, 24].

We will say that an operator H is Hankel if, with respect to a canonical basis,
the matrix of H has the property that all diagonals perpendicular to the main one
(usually called “skew–diagonals”) are constant.

The canonical basis for H2 is {zn}∞n=0, and thus H ∈ B(H2) is a Hankel operator
if and only if it satisfies the equation S∗H = HS. We will denote the space of all
bounded Hankel operators on H2 by Hank.

Given φ ∈ L∞, define the operator Hφ : H2 −→ H2 by

Hφf = PJ(φf),

where P denotes the orthogonal projection from L2 onto H2 and J is the flip
operator defined above. Since φ ∈ L∞ we have that Hφ ∈ B(H2); also (Hφ)∗ =
Hφ∗ . It is easy to see that each such Hφ is a Hankel operator. The converse is a
classical result of Nehari [20].

Theorem 2.1. The Nehari map Γ∗ : L∞/(zH∞) → B(H2), defined by

Γ∗(φ+ zH∞) = Hφ, φ ∈ L∞,

is an isometry with range Hank.

Much of what we do in this article ultimately depends on the following basic
computation.

Proposition 2.2. Given a symbol φ ∈ L∞ and vectors f, g ∈ H2, we have

〈Hφf, g〉 =
1
2π

∫ π

−π
φ(eiθ)f(eiθ)g∗(eiθ)dθ.
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Proof. By definition, we have 〈Hφf, g〉 = 〈PJ(φf), g〉 = 〈J(φf), g〉, which coin-
cides with the integral 1

2π

∫ π
−π φ(e−it)f(e−it)g(eit)dt. The desired result follows by

making the substitution θ = −t and recalling the definition of g∗. �

Recall that an operator T ∈ B(H2) is called a Toeplitz operator if S∗TS = T .
This means that the matrix representation of T with respect to the canonical basis
has the property that the diagonals parallel to the main one are constant.

For each φ ∈ L∞ define the operator Tφ : H2 −→ H2 as

Tφf = P (φf),

where P is the orthogonal projection of L2 onto H2. Since φ ∈ L∞ we have that
Tφ ∈ B(H2). It is easy to see that the operator thus defined is a Toeplitz operator
and one can show that all Toeplitz operators arise in this form.

The function φ above is called the symbol of the Toeplitz operator Tφ. Notice
that in this case the symbols are unique. We shall need the fact that T ∗φ = Tφ for
any φ ∈ L∞. When φ ∈ H∞, we will often write φ(S) for the Toeplitz operator Tφ
and φ(S∗) for TJ(φ). These conventions, which are a special case of the H∞ func-
tional calculus for completely nonunitary contractions, will improve the appearance
of many formulas in the sequel. (No corresponding convention is used for Hankel
operators because powers of Hankel operators are usually not Hankel.) In particu-
lar, the shift and its adjoint are both examples of Toeplitz operators: S = Tz and
S∗ = Tz. For all these basic facts about Toeplitz operators, consult [12].

One way of thinking of the following well-known and easy to prove fact is that
analytic Toeplitz operators implement the H∞-module structure on Hank. This
makes the Nehari map a module isomorphism onto Hank.

Proposition 2.3. If ψ ∈ L∞ and φ ∈ H∞ then φ(S∗)Hψ = Hψφ = Hψφ(S).

Duality. Assume that X is a Banach space, and that X∗ is its dual space, where
the duality is implemented by the bilinear form

〈·, ·〉 : X∗ ×X −→ C.

In such a setting, the annihilator of a subset L of X is defined by

L⊥ := {a ∈ X∗ : 〈a, t〉 = 0 for all t ∈ L},

while the preannihilator of a subset M of X∗ is defined by

M⊥ := {t ∈ X : 〈a, t〉 = 0 for all a ∈M}.

From topological vector space theory, we know that the map L 7→ L⊥ sets up a
one-to-one correspondence between the collection of norm-closed linear manifolds
in X and the collection of weak* closed linear manifolds in X∗; the inverse map is
implemented by taking preannihilators. In fact, we will reserve the term subspace
to refer to these two types of linear manifolds, i.e., either norm closed in X or weak*
closed in X∗. Moreover, if M is a subset of X or X∗, we write [M ] for the subspace
(closed in the appropriate topology) generated by M ; given another subset L ⊂M ,
we say L is total in M if [L] = [M ].
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Reflexivity. Our main use of duality will involve the spaces B(H) and Tr(H),
where B(H) is the full algebra of bounded linear operators acting on a separable
Hilbert space H, while Tr(H) is its ideal of trace class operators under the trace
norm [27]. The space B(H) is the dual of Tr(H) under the pairing

〈A, T 〉 := tr (AT ), A ∈ B(H), T ∈ Tr(H).

The corresponding weak* topology on B(H) is sometimes called the ultraweak
operator topology.

The rank-one operators play an important role in what follows. Given f, g ∈ H,
the operator f ⊗ g is defined by (f ⊗ g)h = 〈h, g〉 f . Every operator of rank one or
less takes this form, and each operator of rank n can be written as a sum of n such
operators. The collection of operators having rank at most n is denoted Fn(H)
and the collection of all operators of finite rank is denoted F(H); reference to the
underlying Hilbert space is usually omitted. If A and B are bounded operators on
H, we have that A(f ⊗ g)B = (Af)⊗ (B∗g) and

〈B, f ⊗ g〉 = tr (B(f ⊗ g)) = 〈Bf, g〉 .
The first 〈·, ·〉 in this equation reflects the duality between B(H) and Tr(H) (with-
out adjunction), while the second 〈·, ·〉 above refers to the usual inner product
(involving conjugation) on H.

Whenever we write a series of the form
∑∞
n=1 fn ⊗ gn, it will be assumed that∑

‖fn‖‖gn‖ <∞. Such series converge in the trace norm topology and every trace
class operator can be represented in this way. The preceding display generalizes to〈

B,
∑

fn ⊗ gn

〉
=
∑

〈Bfn, gn〉 , B ∈ B(H),
∑

fn ⊗ gn ∈ Tr(H).

We now recall the following definitions, along with some of their basic properties.
All of it can be found in [1]. Historical perspective can also be gained from [5], [11]
(especially Section 22) and [25].

Definition 2.4. Let L be a linear manifold in B(H).
(1) The reflexive closure of L is given by

ref L :=
{
B ∈ B(H) : Bf ∈ Lf for all f ∈ H

}
(2) The space L is transitive if ref L exhausts the whole space of operators.
(3) The space L is reflexive if L = ref L.
(4) A single operator B ∈ B(H) is reflexive if the weak* closed algebra gener-

ated by B and the identity operator is a reflexive linear manifold.
(5) We say L is elementary if L⊥ + F1 exhausts the predual space Tr(H).

We always have L ⊂ ref L ⊂ B(H), with (2) and (3) representing extreme
possibilities. Note that A /∈ ref L if and only if there are vectors f, g ∈ H with
g ⊥ Lf , but 〈A, f ⊗ g〉 = 〈Af, g〉 6= 0. This provides the useful characterization

ref L = (L⊥ ∩ F1)⊥.

In particular, ref L is always weak* closed and L is transitive if and only if L⊥
contains no rank-one operators; for weak* closed L, reflexivity is tantamount to
having L⊥ ∩ F1 total in L⊥.

More generally, for a positive integer k, a weak* closed subspace L is said to be
k-reflexive if L⊥ ∩ Fk total in L⊥. There is a fleeting reference to 2-reflexivity in
Theorem 3.2, but otherwise, this concept will not be needed in this paper.
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Concept (5) above goes by the name Property ℵ1 in [5]. We will find the third
part of the following Proposition especially useful.

Proposition 2.5. Let L be an elementary subspace of B(H) and suppose K is a
subspace of L.

(1) K = L ∩ ref K
(2) No proper subspace of L can be transitive.
(3) If ref K ⊂ L then K is reflexive.

Proof. Since every operator space is contained in its reflexive closure, we only have
to be concerned with the inclusion ⊃ of (1). So assume a /∈ K, but a ∈ L. Then
there is a trace class operator t ∈ K⊥ with 〈a, t〉 6= 0. Because L is elementary, we
may even assume t ∈ F1, which means a /∈ ref K, and (1) is established. (2) and
(3) are immediate consequences of (1). �

We also need a few general facts concerning reflexivity.

Lemma 2.6. Suppose X,Y are operators, while T is a linear space of operators.
(1) Then X(ref T )Y ⊂ ref (XT Y ).
(2) If Y XA = A for each A ∈ T , then

(a) Xref T = ref (XT ).
(b) Y ref (XT ) = ref T .
(c) T is reflexive if and only if XT is reflexive.

Proof. Given C ∈ ref T and f in the underlying Hilbert space, we have

XCY f ∈ X[T Y f ] ⊂ XT Y f,

so XCY ∈ ref (XT Y ). Thus X(ref T )Y ⊂ ref (XT Y ) and (1) is established.
In particular, (I −XY )ref (XT ) ⊂ ref ((X −XYX)T ) = {0}, so

ref (XT ) = XY ref (XT ) ⊂ Xref (Y XT ) = Xref T ⊂ ref (XT ),

and ref (XT ) = Xref T , giving (2a). Multiplying the last equation by Y on the
left also gives Y ref (XT ) = Y Xref T = ref T , and (2b) is established. Finally, (2c)
follows immediately from (2a) and (2b). �

The reader primarily interested in the semi-infinite or finite cases should now
skip to Section 7 or Section 8 respectively.

3. Cosymbols and companion spaces

The cosymbol map. The Nehari map Γ∗ of Theorem 2.1 is weak* to weak*
continuous. By topological vector space theory, we therefore know it is dual to a
map Γ : Tr(H2) → H1. We refer to Γ as the cosymbol map. It will allow us to
investigate various reflexivity questions in a function theoretic setting.

Proposition 3.1. The cosymbol map Γ has the following properties.
(1) Γ is given by the explicit formula Γ(

∑
fn ⊗ gn) =

∑
fng

∗
n.

(2) Γ is a contraction.
(3) Γ is surjective. In fact, given u ∈ H1, there is an operator f ⊗ g of rank at

most one satisfying Γ(f ⊗ g) = u and ‖f ⊗ g‖Tr(H2) = ‖u‖1.
(4) The kernel of Γ is Hank⊥.
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Proof. Given f, g ∈ H2 and φ ∈ L∞, we have

〈φ+ zH∞,Γ(f ⊗ g)〉 = 〈Hφ, f ⊗ g〉 =< Hφf, g >=< φ+ zH∞, fg∗ >,

where the first equality comes from the definition of dual operator, while the third
equality is the basic Proposition 2.2. This means Γ(f ⊗ g) = fg∗, from which
(1) follows by linearity and continuity. (2) is true since ‖Γ∗‖ = 1 by the Nehari
Theorem.

It is well known that any function u ∈ H1 can be factored as u = fg∗ with
f , g ∈ H2 and ‖f‖2 = ‖g‖2 =

√
‖u‖1. It then follows that Γ(f ⊗ g) = u and

‖f ⊗ g‖Tr(H2) = ‖u‖1, which establishes (3).
Nehari’s Theorem tells us that range(Γ∗) = Hank, whence kernel(Γ) = Hank⊥

by general topological vector space theory. �

The full space Hank. We now use Proposition 3.1 to obtain reflexivity properties
of the full space of Hankel operators on H2. Theorem 3.2 was proven in [19].

Theorem 3.2. The space Hank is transitive, but it is 2-reflexive and elementary.

Proof. From Proposition 3.1, we know that Hank⊥ is the kernel of the cosymbol
map Γ. In particular, f ⊗ g ∈ Hank⊥ implies fg∗ = 0, which only occurs when
f = 0 or g = 0. Thus Hank⊥ has no rank-one members, which makes Hank
transitive.

For 2-reflexivity, suppose A ∈ (Hank⊥ ∩ F2)⊥. For each f, g ∈ H2, we have
Γ(f ⊗ zg − zf ⊗ g) = 0, which implies f ⊗ zg − zf ⊗ g ∈ Hank⊥ ∩ F2 since
ker Γ = Hank⊥. Hence,

〈(S∗A−AS)f, g〉 = 〈A, f ⊗ zg − zf ⊗ g〉 = 0,

implying S∗A = AS. Thus A ∈ Hank.
To see that Hank is elementary, let T ∈ Tr(H2). Set u := Γ(T ), and choose

f, g ∈ H2 as in Part (3) of Proposition 3.1. Then

T = (T − f ⊗ g) + f ⊗ g ∈ Hank⊥ + F1.

Thus Hank⊥+F1 exhausts Tr(H2) and Hank is elementary by definition. (In fact
we have shown that Hank⊥+Ball(F1) covers the unit ball of Tr(H2) which means
that Hank has the stronger Property ℵ1(1) in the terminology of [5].) �

The following is a special case of Proposition 2.5. The third assertion will be
used every time we show a subspace of Hank to be reflexive. Part (2) was obtained
in [19].

Corollary 3.3. Let K be a subspace of Hank.
(1) K = Hank ∩ ref K.
(2) No proper subspace of Hank can be transitive.
(3) ref K ⊂ Hank if and only if K is reflexive.

Proof of Proposition 1.1: Observe that Proposition 1.1 is just the first assertion
of Theorem 3.2 and Part (1) of Corollary 3.3. �
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Companion spaces. Proposition 3.4 will enable us to move freely between sub-
spaces of Hank and H1.

For notational clarity, we will use the symbol ± to denote annihilators (and
preannihilators) relative to the duality between L∞/(zH∞) and H1 mentioned
at the beginning of the previous section while continuing to use the standard ⊥
notation for annihilators relating to the duality between B(H2) and Tr(H2).

One further piece of notation will prove convenient for us. When M is a subspace
of a Banach space X, we will write LAT(M) for the lattice of all subspaces of M
and COLAT(M) for the lattice of all subspaces of X which contain M . The same
conventions are adopted for (weak* closed) subspaces of X∗.

Proposition 3.4. For each subset K of H1, we have (Γ−1(K))⊥ = Γ∗(K±). More-
over, the following is a commutative diagram of lattice isomorphisms and anti-
isomorphisms.

LAT(H1) ±−−−−→ LAT(L∞/(zH∞))

Γ−1

y yΓ∗

COLAT(Hank⊥) ⊥−−−−→ LAT(Hank)

Proof. Given φ + zH∞ ∈ K± and t ∈ Γ−1(K), we have 〈Γ∗(φ+ zH∞), t〉 =
〈φ+ zH∞,Γ(t)〉 = 0, so (Γ−1(K))⊥ ⊃ Γ∗(K±). To get the opposite inclusion,
take A ∈ (Γ−1(K))⊥. Since Γ−1(K) ⊃ kernel Γ, we see that A ∈ (Hank⊥)⊥ =
Hank. Since the range of the Nehari map Γ∗ exhausts Hank, we can write
A = Γ∗(φ + zH∞) for some φ ∈ L∞. Let f ∈ K. By surjectivity of Γ, we
have f = Γ(t) for some t ∈ Γ−1(K), and

< φ+ zH∞, f >=< A, t >= 0.

This shows that φ+ zH∞ ∈ K±, whence A ∈ Γ∗(K±) as desired.
Since any M ∈ LAT(L∞/zH∞) can be expressed as M = K± for K = M±, we

see that Γ∗ maps LAT(L∞/zH∞) into LAT(Hank), so all the maps in the diagram
are well-defined, and the diagram commutes.

To complete the proof, it suffices to show that three of the lattice maps in the
diagram are bijective. Like all annihilator maps, the horizontal maps ±,⊥ are
lattice anti-isomorphisms. Write π for the natural projection map from Tr(H2) to
Tr(H2)/Hank⊥. Then π induces a lattice isomorphism between COLAT(Hank⊥)
and LAT(Tr(H2)/Hank⊥). Also, Γ◦π−1 is a Banach space isomorphism and hence
sets up a lattice isomorphism between LAT(Tr(H2)/Hank⊥) and LAT(H2). Thus
Γ = (Γ ◦ π−1) ◦ π provides a lattice isomorphism, and the vertical map Γ−1 is our
third lattice bijection. �

Definition 3.5. The companion space to a subset K of H1 is defined as

C(K) := {Hφ ∈ Hank :
∫
φu = 0 for each u ∈ K}.

For an individual u ∈ H1, we write Cu := C({u}) and Mu := C(uH∞).

Thus, in duality notation, we have C(K) = Γ∗(K±), which coincides with
(Γ−1(K))⊥ by the last proposition.

Here are some observations on companion spaces.

Proposition 3.6. Let u ∈ H1 and K ⊂ H1.
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(1) C(K) only depends on the closed linear span [K] of K.
(2) C sets up a lattice anti-isomorphism between the subspaces of H1 and sub-

spaces of Hank.
(3) Cu is the most general hyperspace of Hank.
(4) Mu is the most general submodule of Hank; it only depends on the inner

factor of u.
(5) Let s be the greatest common divisor of all inner factors of members of [K].

Then Ms is the largest submodule of C(K).
(6) In order for a rank-one operator f ⊗ g to belong to [C(K)]⊥ it is necessary

and sufficient that fg∗ ∈ [K].

Proof. We will be referring to the diagram of Proposition 3.4.
(1) We have C(K) = Γ∗(K±) and K± = [K]±.
(2) This follows from the bijectivity of the lattice maps in the diagram.
(3) The Nehari map Γ∗ preserves codimension (since it is a vector space isomor-

phism), while taking annihilators interchanges codimension with dimension.
(4) Given φ+ zH∞ ∈ L∞/(zH∞), u ∈ H1, and f ∈ H∞, we have

〈f(φ+ zH∞), u〉 = 〈φ+ zH∞, fu〉 .
It follows that N± is a submodule of L∞/(zH∞) whenever N is a submod-
ule of H1; conversely, when K is a submodule of L∞/(zH∞), its preanni-
hilator K± must be a submodule of H1. Notice that Γ∗ is an H∞-module
isomorphism and thus M is a submodule of Hank if and only if Γ∗−1(M) is
a submodule of L∞/(zH∞), and this happens if and only if (Γ∗−1(M))± is
a submodule of H1. But Beurling’s Theorem tells us that every submodule
of H1 is singly-generated and of the form [uH∞]. Also, it only depends on
the inner factor of u. Thus (Γ∗−1(M))± = [uH∞] for some u ∈ H1 and
since Mu = C(uH∞) = Γ∗([uH∞]±), it follows that M must equal Mu.

(5) The largest submodule M of C(K) is {Hφ : Hfφ ∈ C(K) for all f ∈ H∞}.
The submodule C−1(M) equals [H∞K] which by Beurling’s Theorem equals
sH∞.

(6) By Part (1) we know that C(K) = C([K]) = (Γ−1([K]))⊥, so [C(K)]⊥ =
Γ−1([K]) by continuity. But f ⊗ g belongs to the latter space if and only if
fg∗ = Γ(f ⊗ g) ∈ [K].

�

Parts (4) and (5) of the last proposition motivate the following definition.

Definition 3.7. Let M be a subspace of Hank. The greatest common divisor of all
inner factors of members of C−1(M) is called the seed of M and denoted seed (M).

Corollary 3.8. Let W be a subspace of Hank with seed θ.
(1) Mθ is the largest H∞-submodule of Hank contained in W.
(2) The rank-one operator f ⊗ g belongs to W⊥ if and only if fg∗ ∈ C−1(W).
(3) The rank-one operator f ⊗ g belongs to [Mθ]⊥ if and only if θ divides fg∗.

Proof. Part (1) follows by applying Proposition 3.6(5) with K := C−1(W).
To obtain part (2), apply Proposition 3.6(6) to K := C−1(W).
For (3), apply Proposition 3.6(6) to K := θH∞ to see that f ⊗ g ∈ [Mθ]⊥ if and

only if fg∗ ∈ [θH∞]. But the latter condition is equivalent to fg∗ being divisible
by θ. �
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4. Reflexivity of submodules of Hank

In Theorem 4.5, we establish the equivalence of Conditions (3) and (4) of Theo-
rem 1.3, which we then combine with Kapustin’s result to the effect that Conditions
(4) and (5) of Theorem 1.3 are also equivalent. Theorem 4.5 is a two-way street
which can be used to apply the results of Section 6 below to Jordan models.

Definition 4.1. Let θ be an inner function. The subspace H2 	 θH2 is denoted
by H(θ). The Jordan model S(θ) : H2 −→ H2 is defined by

S(θ) := PH(θ)S.

Here PH(θ) is the orthogonal projection from H2 to H(θ).

Note that since θH2 is invariant under the shift S, we actually have S(θ) =
PH(θ)S = PH(θ)SPH(θ). In fact, the usual convention is to restrict the domain and
codomain of S(θ) to H(θ) (the resulting operator being called the compression of
the shift S to H(θ)) but it simplifies our notation to have all these operators acting
on the same Hilbert space H2. Jordan models have been studied extensively (see,
for example, [4, 21]) and it is well known that they are related to Hankel operators.
There is a natural H∞ functional calculus for S(θ). Proofs of Theorem 4.3 can be
found, for example, in [4, p. 41] and [21, p. 230].

Definition 4.2. For every φ ∈ H∞, the operator φ(S(θ)) on H2 is defined by
φ(S(θ)) := PH(θ)φ(S).

Theorem 4.3. Let θ be an inner function. Then the weak* closed algebra generated
by S(θ) is

AS(θ) := {φ(S(θ)) : φ ∈ H∞} .

The identity of this algebra is PH(θ); when domains and codomains are restricted
to H(θ), the algebra AS(θ) becomes the commutant of S(θ).

The following variant of the Commutant Lifting Theorem (see e.g. [21, p. 230])
provides our basic tool for relating spaces of Jordan models and Hankel operators.

Lemma 4.4. Let θ be an inner function and write X := Hzθ.
(1) X∗X = PH(θ), i.e., X is a partial isometry with initial space H(θ).
(2) For every function φ ∈ H∞ we have Hzθφ = Xφ(S(θ)).
(3) Mθ = XAS(θ).

Proof. (1) can be found on Page 34 of [24]; it can also be checked directly.
Hzθφ(S) = Hzθφ by Proposition 2.3. Since Hzθ = HzθPH(θ) by Part (1), we

have
Hzθφ = Hzθφ(S) = HzθPH(θ)φ(S) = Hzθφ(S(θ)),

establishing (2).
For (3), first apply the definition to note that the Hankel operator Hψ is in Mθ

if and only if
∫
ψθf = 0 for all f ∈ H∞, i.e., if and only if ψθ ∈ zH∞ which is in

turn equivalent to ψ being of the form zθφ for some function φ ∈ H∞.
That is, a Hankel operator is in Mθ if and only if it has the form Hzθφ for

φ ∈ H∞. As φ ranges through H∞, Part (2) implies that the corresponding Hankel
operators Hzθφ exhaust Mθ, while φ(S(θ)) traces out AS(θ) by Theorem 4.3. �

Theorem 4.5. Let θ be an inner function. Then:
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(1) ref Mθ = Hzθref AS(θ).
(2) ref AS(θ) = (Hzθ)

∗ref Mθ.
(3) Mθ is a reflexive module of Hankel operators if and only if S(θ) is a reflexive

Jordan model.

Proof. Take X = Hzθ and Y = X∗, and write T := AS(θ). The preceding lemma
shows that the hypothesis of Lemma 2.6(2) is satisfied and hence the conclusions
of the current Theorem follow. �

Kapustin’s Theorem. We close this section with some detail concerning the
equivalence of parts (4) and (5) of Theorem 1.3.

Definition 4.6. Let E be a closed subset of (−π, π]. We say that E is a Beurling-
Carleson set (a BC-set) if E has zero Lebesgue measure and the sum

∑
`k log 2π

`k
is

finite. Here {`k} consists of the lengths of the intervals making up the complement
of E.

We say that a measure µ is BC-vanishing if µ(E) = 0 for every BC-set E.

Note in particular that singleton point sets are BC and thus BC-vanishing mea-
sures must be totally nonatomic.

Here is the main result of [16, 17]

Theorem 4.7 (Kapustin). Let θ be an inner function and write µ for the repre-
senting measure of the singular factor of θ. The following statements are equivalent.

(1) The function θ has no multiple zeros in D and µ(E) = 0 for every BC-set
E.

(2) The algebra H∞/θH∞ is the weak*-closed linear span of its idempotent
members.

(3) The Jordan model S(θ) is reflexive.

Regarding the proof of Theorem 1.3: That (3) ⇐⇒ (4) is the content of
Theorem 4.5, while (4) ⇐⇒ (5) follows from Theorem 4.7. �

5. Reflexivity of subspaces of Hank

In this section, we complete the proofs of Theorems 1.2 and 1.3. When ω is
outer, Mω = {0} is the only submodule of Cω. The 0-module is trivially reflexive,
so our first job is establishing reflexivity of the hyperspace Cω.

Proposition 5.1. If ω is outer then Cω is reflexive.

Proof. Let B ∈ ref Cω = ((Cω)⊥ ∩ F1)
⊥. Factor ω = ω1ω

∗
2 as the product of two

outer H2 functions. Given a real number a ∈ (−1, 1), define functions f, g ∈ H2

by f(z) := 1− az and g(z) := 1
1−az . Then fg = 1 so (gω1)(f∗ω2)∗ = ω. In view of

Corollary 3.8(2), we have (gω1)⊗ (f∗ω2) ∈ (Cω)⊥ and hence〈
(I − aS∗)B(I − aS)−1ω1, ω2

〉
= 〈Bgω1, f

∗ω2〉 = 0, −1 < a < 1.

Expanding this expression as a power series in a yields(
B +

∞∑
n=0

an+1(BS − S∗B)Sn
)
ω1 ⊥ ω2, −1 < a < 1.
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Since the orthogonal complement of ω2 is linear and (norm) closed, repeatedly
differentiating and evaluating at a = 0 shows the coefficient of each power of a
must belong to this space as well:

〈(BS − S∗B)Snω1, ω2〉 = 0 n = 0, 1, . . . .

Replacing f by f(z) := (1− az) exp(bzm) and g by g(z) := exp(−bzm)
1−az in the above

argument, the last display becomes

〈exp(b(S∗)m)(BS − S∗B)Sn exp(−bSm)ω1, ω2〉 = 0, −1 < b < 1; m,n ∈ N.

Differentiating the last expression once with respect to b and then setting b = 0
yields

〈(S∗)m(BS − S∗B)Snω1, ω2〉 −
〈
(BS − S∗B)Sm+n(ω1), ω2

〉
= 0.

Since we already know the second inner product in this display is zero, we conclude
that

(BS − S∗B)znω1 ⊥ zmω2, m, n ∈ N.
Since ω1, ω2 are outer, this means BS − S∗B = 0, so B ∈ Hank. An appeal to
Corollary 3.3(3) completes the proof. �

Our next task is to show more generally that reflexivity of Cθω does not depend
on the outer factor ω. The plan is to use Toeplitz operators to build up the class
of inner functions θ for which this is true. Proposition 5.1 got us started with the
case θ = 1.

Proposition 5.2. Let u ∈ H1 and φ, ψ ∈ H∞.
(1) If ψφ divides u, then B ∈ ref Cu implies φ(S∗)Bψ(S) ∈ ref Cu/(ψφ).
(2) If ψφ divides u, then B ∈ ref Mu implies φ(S∗)Bψ(S) ∈ ref Mu/(ψφ).
(3) B ∈ ref Mu implies φ(S∗)Bψ(S) ∈ ref Mu.

Proof. Given Hη ∈ Cu, we have
∫
ηu = 0 by definition. Proposition 2.3 yields

φ(S∗)Hηψ(S) = Hφηψ. Since we already know
∫

(φηψ)(u/(ψφ)) = 0, we conclude
that φ(S∗)Cuψ(S) ⊂ Cu/(ψφ) Applying Lemma 2.6(1), we then get

φ(S∗)(ref Cu)ψ(S) ⊂ ref (φ(S∗)Cuψ(S)) ⊂ ref (Cu/(ψφ)),

which establishes the first assertion of the proposition. The second assertion can
be proved in the same manner. The third assertion follows from the fact that,
since Mu is an H∞-module, φ(S∗)Muψ(S) ⊂ Mu. Now apply Lemma 2.6(1) as
above. �

Corollary 5.3. Suppose F is a family of inner functions having a least common
multiple v.

(1) ref Mv is the (weak*) closed linear span of {ref Mu : u ∈ F}.
(2) In order that Mv be reflexive it is necessary and sufficient that Mu be

reflexive for each u ∈ F .
(3) In order that Cv be reflexive it is sufficient that Cu be reflexive for each

u ∈ F .

Proof. Write W for the (weak*) closed linear span of {ref Mu : u ∈ F}. Since
Mv ⊃ Mu for each u ∈ F , we at least have W ⊂ ref Mv of (1). To get the
opposite inclusion, let B ∈ ref Mv. Then for each u ∈ F and each p ∈ v

uH
∞,

Bp(S) ∈ ref Mu ⊂ W by parts (3) and (2) of the previous proposition. Since
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gcd{ vu : u ∈ F} = 1, we conclude by Beurling’s Theorem that the constant function
1 belongs to the (weak*) closed linear span of { vuH

∞ : u ∈ F}, whence B ∈ W
since W is a (weak*) closed subspace. This establishes (1).

To prove (2) observe first that, since Mv ⊃ Mu, reflexivity of Mv implies
reflexivity of Mu for all u ∈ F , by Corollary 3.3(3). For the opposite direction,
observe that sinceMv is the (weak*) closed linear span of {Mu : u ∈ F}, reflexivity
of Mv follows from part (1).

For (3), suppose each Cu is reflexive and let B ∈ ref Cv. Then the previous
proposition yields B

(
v
u

)
(S) ∈ ref Cu ⊂ Hank for each u ∈ F . Define

I := {ψ ∈ H∞ : Bψ(S) ∈ Hank} ,

which is a (weak*) closed ideal. It then follows that v
u ∈ I for all u ∈ F . Since

gcd{ vu : u ∈ F} = 1, Beurling’s Theorem tells us the constant function 1 is in I,
whence B ∈ Hank. �

The span of any two distinct hyperplanes in Hank will contain all of Hank so (1)
fails rather spectacularly when M is replaced by C. However, the converse of (3)
is an immediate consequence of (2) and Corollary 5.11 below. Similar comments
apply to the following dual of the last Corollary.

Corollary 5.4. Suppose F is a family of inner functions and write v for its greatest
common divisor. Then ref Mv is the intersection of {ref Mu : u ∈ F}.

Proof. Write W for the intersection of {ref Mu : u ∈ F}. Since Mv ⊂Mu for each
u ∈ F , we at least have ref Mv ⊂ W. To get the opposite inclusion, let B ∈ ref W.
Then for each u ∈ F , we have B u

v (S) ∈ u
v (S)ref Mu ⊂ ref Mv. Define

I := {ψ ∈ H∞ : Bψ(S) ∈ ref Mv},

which is a (weak*) closed ideal. Since gcd{uv : u ∈ F} = 1, Beurling’s Theorem
allows us to conclude that B ∈ ref Mv as well. �

Consistency. Recall that, by Proposition 2.3 above, if it is known a priori that
A ∈ Hank, then φ(S∗)A and Aφ(S) are both Hankel and they agree. If A /∈ Hank,
it still might turn out that one of φ(S∗)A or Aφ(S) is Hankel, but this doesn’t
guarantee that they’re both Hankel and even when they are, they might not agree.
For simple examples, take φ(z) = z with A = 1 ⊗ z2 and A = 1 ⊗ z. The goal of
the next three lemmas is to show that this pathology doesn’t arise when we apply
Proposition 5.2.

The rank-one Hankel operators are well-known. For a ∈ D, define the operator
Ra by

Ra :=
1

1− az
⊗ 1

1− āz
.

It is easily seen that Ra is the Hankel operator H 1
1−az̄

and that, in fact, every rank-
one Hankel operator is a scalar multiple of some Ra. Note that

∫
u

1−az̄ = u(a) for
every u ∈ H1. Thus Ra ∈ Cu if and only if u(a) = 0. In particular, Cu (and hence
Mu) has no rank-one members when the Blaschke factor of u is trivial.

Lemma 5.5. Suppose β is a Möbius function, while ω is outer. Then Cβω is
reflexive and β(S∗)A = Aβ(S) for each A ∈ ref Cβω.
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Proof. Choose a in the unit disc so that β(z) = z−a
1−az . Given A ∈ ref Cβω, Proposi-

tion 5.2 tells us that β(S∗)A and Aβ(S) both belong to ref Cω = Cω ⊂ Hank. Thus
β(S∗)(β(S∗)A−Aβ(S)) = 0 (by Proposition 2.3) and the range of β(S∗)A−Aβ(S)
is contained in the one-dimensional kernel of β(S∗). Since Cω has no rank-one mem-
bers, we conclude β(S∗)A−Aβ(S) = 0 and the second conclusion of the Lemma is
established.

The remaining conclusion comes from the computation

(S∗ − aI)A = (I − aS∗)β(S∗)A
= (I − aS∗)Aβ(S)
= Aβ(S)(1− aS)
= A(S − aI),

where the third equality follows from Aβ(S) being a Hankel operator. This equality
implies S∗A = AS, which puts A ∈ Hank. �

The next proof does not directly deal with reflexivity.

Lemma 5.6. Suppose A ∈ ref Cσω where σ is a singular inner function, while ω is
outer. Then σ(S∗)A = Aσ(S).

Proof. Recall that one can define arbitrary powers of singular inner functions. For
each positive integer n and integer k, 0 ≤ k ≤ n, Proposition 5.2 yields

σ
k
n (S∗)Aσ

n−k
n (S) ∈ ref Cω = Cω.

In particular, these operators are all in Hank and hence intertwine σ
1
n (S∗) and

σ
1
n (S) (by Proposition 2.3): σ

k+1
n (S∗)Aσ

n−k
n (S) = σ

k
n (S∗)Aσ

n+1−k
n (S). Applying

these equations in turn with k = 1, 2, . . . , n− 1, we conclude

σ
1
n (S∗)Aσ(S) = σ(S∗)Aσ

1
n (S)

whence taking the limit as n→∞ yields the desired result. �

Lemma 5.7. Suppose A ∈ ref Cθω where θ is an inner function, while ω is outer.
Then θ(S∗)A = Aθ(S).

Proof. Set F := {θ inner: the conclusion of the Lemma holds for each outer ω}.
The preceding two lemmas imply that F contains all Möbius transformations

and singular inner functions. We next check that F is closed under multiplication.
Let θ, η ∈ F , with ω is outer, and A ∈ ref Cθηω. Then θ(S∗)A ∈ ref Cηω, so

η(S∗)θ(S∗)A = θ(S∗)Aη(S),

since η ∈ F . But Aη(S) ∈ ref Cθω, so

θ(S∗)Aη(S) = Aη(S)θ(S),

since θ ∈ F . Combining these equations gives (θη)(S∗)A = A(θη)(S), as desired.
Suppose now that β =

∏
βn is a Blaschke product, that ω is outer, and that

A ∈ ref Cβω. Write ρn :=
∏n
k=1 βk and τn := β

ρn
. For each n, we have τn(S∗)A ∈

Cρnω, so
ρn(S∗)τn(S∗)A = τn(S∗)Aρn(S)

since ρn ∈ F . Taking the limit on n, we see that β ∈ F .
The result for general θ now follows from the canonical factorization of inner

functions. �
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Main results.

Proposition 5.8. Let W be a weak* closed subspace of Hank with seed θ. Given
B ∈ ref W, there is an individual Hankel operator Hφ such that v(S∗)Bu(S) =
Bθ(S) = Hφ whenever u, v are inner functions satisfying uv = θ.

Proof. Suppose θ = uv is any factorization of θ with u and v inner functions. Fix
an element of C−1(W) with inner-outer factorization ψω, so that B ∈ Cψω and set
η := ψ

θ . Then Bu(S) ∈ ref Cvηω by Proposition 5.2. Lemma 5.7 tells us that

η(S∗)v(S∗) (Bu(S)) = (Bu(S)) v(S)η(S) = Bθ(S)η(S),

and the latter operator belongs to ref Cω ⊂ Hank. Define

I := {η ∈ H∞ : η(S∗)v(S∗)Bu(S) = Bθ(S)η(S) ∈ Hank}

which is a (weak*) closed ideal. By definition of seed,

gcd
{
ψ

θ
: ψ inner part of functions in C−1(W)

}
= 1,

whence we conclude by Beurling’s Theorem that v(S∗)Bu(S) = Bθ(S) and that
this operator in is Hank. The proof is completed by taking Hφ = Bθ(S). �

Proposition 5.9. Let W be a weak* closed subspace of Hank with seed θ. Then
the following are equivalent for an operator B on H2.

(1) B ∈ ref Mθ.
(2) B ∈ ref W and Bθ(S) = 0.
(3) B satisfies v(S∗)Bu(S) = 0 whenever u, v are inner functions with uv = θ.

Proof. Assuming (1), we get B ∈ ref W because Mθ ⊂ W. Also, Proposition 5.2
tells us that Bθ(S) ∈M1 = {0} yielding (2).

That (2) implies (3) follows from the preceding proposition.
Finally assume (3) and suppose f ⊗ g ∈ (Mθ)⊥ ∩F1. To complete the proof, we

must show 〈Bf, g〉 = 0. Corollary 3.8 tells us θ | fg∗.
Take u to be the greatest common divisor of θ and the inner factor of f , and set

v := θ
u . Then v must divide g∗. Thus

〈Bf, g〉 =
〈
B

(
u
f

u

)
, v∗

g

v∗

〉
=
〈
v(S∗)Bu(S)

(
f

u

)
,
g

v∗

〉
= 0.

Thus B ⊥ f ⊗ g and the proof is complete. �

Theorem 5.10. Let W be a weak* closed subspace of Hank with seed θ. Then

ref W = W + ref Mθ.

Proof. Clearly, the right-hand side is contained in the left-hand side. For the reverse
inclusion, suppose A ∈ ref W, choose Hφ as in Proposition 5.8 and set B :=
A−Hφθ. Then B satisfies the third condition of Proposition 5.9 so B ∈ ref Mθ ⊂
ref W. In particular, Hφθ = A − B ∈ ref W and since Hank ∩ ref W = W, we
have that Hφθ ∈ W. Thus A = Hφθ +B ∈ W + ref Mθ. �

Proof of Theorem 1.2: Observe that this is just the previous theorem. �
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Corollary 5.11. Let N ⊂ H1, take W := C(N) to be the corresponding subspace of
Hank, and set θ as the greatest common divisor of the inner factors of the members
of N . Then the following are equivalent:

(1) W is reflexive.
(2) Cθ is reflexive.
(3) Mθ is reflexive.

In particular, reflexivity of W is equivalent to reflexivity of the largest H∞-module
it contains.

Proof. Proposition 3.6 implies that C−1(W) is the closed linear span of N , whence
θ is in fact the seed of W. Theorem 5.10 tells us that ref Mθ ⊂ Hank if and only if
ref W ⊂ Hank, so the equivalence of (1) and (3) follows by Corollary 3.3. Applying
this general result to the special case N = {θ} then yields (2) ⇐⇒ (3). The “in
particular” assertion then follows from Corollary 3.8. �

Observe that the missing converse of Corollary 5.3 (3) follows immediately from
the above corollary.

Proof of Theorem 1.3: The last corollary establishes (1) ⇐⇒ (2) ⇐⇒ (3);
That (3) ⇐⇒ (4) is the content of Theorem 4.5, while (4) ⇐⇒ (5) follows from
Kapustin’s Theorem 4.7. �

6. Finite-rank members of reflexive closures

Recall that given a singular inner function σ there is an associated finite positive
Borel measure µ on (−π, π] which is singular with respect to Lebesgue measure and
such that, except for a constant factor of modulus 1,

σ(z) = exp
(
− 1

2π

∫ π

−π

eit + z

eit − z
dµ(t)

)
.(2)

The function σ is said to be totally atomic if the associated measure is supported
on a countable set, and totally nonatomic if that measure has no atoms. Observe
that any singular inner function σ can then be written as σ = γη, where γ is totally
atomic and η is totally nonatomic.

The following summarizes the main results of this section.

Corollary 6.1. Let θ be a nonconstant inner function.
(1) If θ is a totally nonatomic singular inner function, then ref Mθ has no

nonzero finite-rank members.
(2) In all other cases, ref Mθ has rank-one members.
(3) In particular, when the singular factor of θ is totally atomic, then ref Mθ

is the weak* closed linear span of its rank-one members.

The negative result (1) reflects the depth of Kapustin’s work [16, 17]. In con-
nection with (3), the relevant rank-one operators will be explicitly exhibited. As
an application, we will compute ref W when the the singular factor of the seed of
W is totally atomic, and when the seed is a Blaschke product.

The following proposition does not extend to operators of rank larger than one.
Indeed, each hyperspace Cu has members of every rank greater than one, while Mψ

reduces to {0} for outer ψ,
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Proposition 6.2. Let W be a subspace of Hank and write θ for its seed.
(1) W and Mθ have the same rank-one members.
(2) ref W and ref Mθ also have the same rank-one members.

Proof. Suppose B ∈ F1 ∩ ref W. Let u ∈ C−1(W) have inner-outer factorization
u = φω so that B ∈ Cu. Then Bφ(S) ∈ ref Cω = Cω. But Cω has no rank-one
members so Bφ(S) = 0. Define

I := {ψ ∈ H∞ : Bψ(S) = 0},
which is a (weak*) closed ideal. Since θ is the greatest common divisor of the
functions in I another application of Beurling’s Theorem allows us to conclude
that Bθ(S) = 0, whence B ∈ ref Mθ by Proposition 5.9. Thus we have shown
F1 ∩ ref W ⊂ F1 ∩ ref Mθ. But Mθ ⊂ W, so F1 ∩ ref W = F1 ∩ ref Mθ, proving
(2). Intersecting both sides of the last equality with Hank gives (1) by Corollary
3.3(1). �

Pairwise divisors. The following concept relates our question to arithmetic in
H∞. Thanks to Jeremy Praissman for the nomenclature.

Definition 6.3. Suppose f , g, and θ are nonconstant inner functions. Then we say
that (f, g) is a pairwise divisor for θ if whenever θ = uv is a factorization involving
inner functions, then either f divides u or g divides v.

Proposition 6.4. Suppose (f, g) is a pairwise divisor of θ while B is an operator
on H2 satisfying f(S∗)B = Bg(S) = 0. Then B belongs to the (weak*) closed
linear span of the rank-one members of ref Mθ.

Proof. Suppose θ = uv = vu is a factorization involving inner functions. If f
divides v the hypothesis gives f(S∗)B = 0 and hence v(S∗)B = 0. Otherwise g
divides u and hence Bu(S) = 0. In either case, v(S∗)Bu(S) = 0, so B ∈ ref Mθ by
Proposition 5.9.

Now write X := (f(S∗))∗f(S∗) and notice that X is an orthogonal projection.
Observe that kernel f(S∗) = (f∗H2)⊥ is nontrivial since f is nonconstant. Fix an
orthonormal basis {xn} of kernel f(S∗). Then I−X is projection onto kernel f(S∗)
and thus the series

∑
n xn⊗xn converges weak* to I−X. By hypothesis, XB = 0,

whence
B = (I −X)B =

∑
n

(xn ⊗ xn)B.

For each n, f(S∗)(xn⊗xn)B = 0 since xn ∈ kernel f(S∗). Also, since Bg(S) = 0 we
have that (xn ⊗ xn)Bg(S) = 0 by orthogonality of the sequence {xn}. Therefore,
by the preceeding paragraph, each term in the above display belongs to ref Mθ

and hence B is in the (weak*) closed linear span of the operators (xn ⊗ xn)B ∈
ref Mθ. �

Proposition 6.4 has a partial converse.

Proposition 6.5. Suppose B ∈ ref Mθ has finite rank and its rank is minimal
among all nonzero members of ref Mθ. Then B has rank one and there is a pairwise
divisor (f, g) of θ satisfying f(S∗)B = Bg(S) = 0.

Proof. Take J := {h ∈ H∞ : Bh(S) = 0}. Then J is a (weak*) closed ideal in
H∞, whence Beurling’s Theorem provides a nonconstant inner function g such that
J = gH∞. Thus the inner members of J coincide with the inner multiples of g.
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Similarly, there is a nonconstant inner function f such that, for inner h, h(S∗)B = 0
if and only if f divides h. In particular, f(S∗)B = Bg(S) = 0. Now suppose
θ = uv is any inner factorization of θ. By Proposition 5.9, u(S∗)Bv(S) = 0. Now
if Bv(S) = 0, then g divides v. Otherwise, the rank minimality hypothesis implies
rangeB = rangeBv(S) which implies rangeu(S∗)B = rangeu(S∗)Bv(S) = {0},
whence u(S∗)B = 0 and f divides u. This completes the proof that (f, g) is a
pairwise divisor for θ. Proposition 6.4 then expresses B as a linear combination of
rank-one members of ref Mθ, whence the minimality assumption implies B itself
has rank one. �

Corollary 6.6. The following are equivalent for inner θ and nonzero x, y ∈ H2.
(1) x⊗ y∗ ∈ ref Mθ.
(2) f(S∗)x = g(S∗)y = 0 for some pairwise divisor (f, g) of θ.

Proof. Assuming (1), choose (f, g) from Proposition 6.5. Then 0 = f(S∗)(x⊗y∗) =
(f(S∗)x)⊗y∗ implies f(S∗)x = 0. Also 0 = (x⊗y∗)(g(S)) = x⊗((g(S))∗(y∗)). This
means 0 = (g(S))∗(y∗) which in turn equals (g(S∗)(y))∗ and we have established
(2).

Conversely if (2) holds, then 0 = f(S∗)(x⊗ y∗) = (x⊗ y∗)g(S), and (1) follows
by Proposition 6.4. �

Example 6.7. Take θ(z) = zn, and suppose i, j are nonnegative integers with
i+ j ≤ n− 1. Then zi ⊗ zj ∈ ref Mθ.

Proof. (zi+1, zj+1) is a pairwise divisor for θ. Apply the Corollary 6.6 with x = zi

and y = zj . �

Application to ref Mθ. It is possible to characterize all pairwise divisors.

Proposition 6.8. Let θ be a nonconstant inner function. Then up to scalar mul-
tiples, all pairwise divisors of θ take one of the following two forms.

(1) (βi, βj) where β is is a Möbius transformation, i and j are positive integers,
and βi+j−1 divides θ.

(2) (αr, α1−r) where α is a singular inner function whose measure is supported
at a single point, 0 < r < 1, and α divides θ.

Proof. That the displayed pairs work follows from uniqueness of the canonical
Blaschke-singular factorization of inner functions.

For the converse, let (f, g) be a pairwise divisor for θ. The factorization θ =
θ · 1 = 1 · θ forces f and g to divide θ. Suppose first that f(a) = 0 for some a ∈ D
and write β for the corresponding Möbius transformation. There is a highest power
of β which divides θ which thus factors as θ = ρβn for some ρ which is relatively
prime to β. Since f does not divide ρ, we conclude that g = βj for some 1 ≤ j ≤ n.
But we can also factor θ = βn−j+1[βj−1ρ]. Since g doesn’t divide the bracketed
factor, we conclude that that f = βi for some i ≤ n− j + 1 so our pairwise divisor
takes the form (1).

It remains to consider the case where f and g are singular inner functions. Since
any Blaschke factor of θ is irrelevant to questions of divisibility by f and g, we may
as well assume that θ is singular inner as well. Write µ for the measure on the unit
circle associated to θ as in Equation (2). Then inner divisors of θ correspond to
measures which are less than or equal to µ setwise. For inner divisors h and k of θ,
we write h � k and h ⊥ k when the corresponding measures are related in these
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ways. Applying the Jordan Decomposition Theorem, we can factor θ = ρσ where
ρ ⊥ f and σ � f . Since f does not divide ρ, we conclude g must divide σ so in
fact g � σ � f . By symmetry f and g must be mutually absolutely continuous.
But now, if h is any nontrivial divisor of f , then (h, g) is still a pairwise divisor
of θ whence h ≈ g ≈ f . In other words, the measure associated to f is mutually
absolutely continuous with every smaller measure, and this forces the measures of
f and g to be supported at a single common point of T. Take α := fg to see that
(f, g) takes the form (2). �

Corollary 6.9. Let σ be a totally nonatomic singular inner function. Then σ does
not have a pairwise divisor.

Proof. This is an immediate consequence of Proposition 6.8. �

Proposition 6.10. Suppose θ is a power of a Möbius function. Then ref Mθ is
the (weak*) closed span of its rank-one members.

Proof. Express θ = βn where β is the Möbius function β(z) = z−a
1−āz and write V

for the isometry β(S). Let B ∈ ref Mθ. Since BV n = 0, we have

B =
n−1∑
j=0

BV j(I − V V ∗)(V ∗)j .

Fix j and write C := BV j(I − V V ∗)(V ∗)j . By Proposition 5.9 we have that
βn−j(S∗)C = 0. Also, since (I − V V ∗)V = 0 we have Cβj+1(S) = 0. Since
(βn−j , βj+1) is a pairwise divisor for βn, by Proposition 6.4, we conclude that each
term in the preceding display is in the (weak*) closed linear span of the rank-one
members of ref Mθ and the proof is complete. �

Proposition 6.11. Suppose θ is a singular inner function whose measure is sup-
ported at a single point. Then ref Mθ is the (weak*) closed linear span of its
rank-one members.

Proof. We must show F1 ∩ ref Mθ is total in ref Mθ. Let B ∈ ref Mθ.
Let V be the isometry θ(S). Observe that for each natural number n, since

BV = 0, we have

BV
1
n =

n−1∑
k=1

BV
1
nV

k−1
n

(
I − V

1
n (V ∗)

1
n

)
(V ∗)

k−1
n

Fix k and write C := BV
k
n

(
I − V

1
n (V ∗)

1
n

)
(V ∗)

k−1
n . By Proposition 5.9, we have

θ1−
k
n (S∗)C = 0. Also, since (I − V

1
n (V ∗)

1
n )V

1
n = 0, it follows that CV

k
n = 0.

Since (θ1−
k
n , θ

k
n ) is a pairwise divisor for θ, Proposition 6.4 tells us that C belongs

to the (weak*) closed span of F1∩ref Mθ. Thus each term in the preceeding display
belongs to the (weak*) closed linear span of F1 ∩ ref Mθ and hence BV

1
n belongs

to the (weak*) closed linear span of F1∩ ref Mθ. Taking the limit as n→∞ yields
B ∈ [F1 ∩ ref Mθ] as desired. �

All the pieces are now in place for the proof of Corollary 6.1.
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Theorem 6.12. Let θ be an inner function having factorization θ = γσ, where γ is
an inner function with singular factor totally atomic and σ is a totally nonatomic
singular inner function. Then

[F1 ∩ ref Mθ] = [F ∩ ref Mθ] = ref Mγ .

Proof. The inclusion [F1 ∩ ref Mθ] ⊂ [F ∩ ref Mθ] is obvious.
Suppose B ∈ F∩ ref Mθ. Then Bγ(S) ∈ F∩ ref Mσ. But Corollary 6.9 tells us

σ has no pairwise divisors, whence Proposition 6.5 implies ref Mσ has no nonzero
members of finite rank. Thus Bγ(S) = 0. On the other hand, Bσ(S) ∈ ref Mγ .
Since γ and σ are relatively prime, there exists H∞ functions h and k such that
1 = γh+σk and hence B = Bγ(S)h(S)+Bσ(S)k(S) = Bσ(S)k(S). By Proposition
5.2(3), we can then conclude that B ∈ ref Mγ . Thus we have established the second
inclusion [F ∩ ref Mθ] ⊂ ref Mγ .

For the remaining inclusion, express γ = Πnγn where each γn is either a power
of a Möbius function or a singular inner function whose measure is supported at a
single point; no two γn’s should have a common zero or be supported at the same
point of T. Applying Propositions 6.10 and 6.11, we learn that for each n,

ref Mγn
= [F1 ∩ ref Mγn

] ⊂ [F1 ∩ ref Mθ].

But Proposition 5.3(1) tells us that ref Mγ is the closed linear span of {ref Mγn}.
Thus ref Mγ ⊂ [F1 ∩ ref Mθ] and the cycle is complete. �

Proof of Corollary 6.1: Observe that, for θ inner, Mθ 6= {0} if and only if θ
is nonconstant. Then, we only need to apply the previous theorem with γ = 1, γ
nonconstant, and σ = 1 to get Parts (1), (2), and (3) respectively. �

We close this subsection with a refinement of Corollary 6.1(1).

Proposition 6.13. Let W be a weak*-closed subspace of Hank whose seed θ is a
totally nonatomic singular inner function. Then all finite-rank members of ref W
belong to W itself.

Proof. Let A ∈ ref W have finite rank. Apply Proposition 5.8 to find an individual
Hankel operator Hφ such that

v(S∗)Au(S) = Aθ(S) = Hφ

whenever u, v are inner functions satisfying uv = θ. Since Hφ has finite rank, the
vectors Hφ1,Hφz,Hφz

2, . . . are linearly dependent and there is a polynomial p 6≡ 0
such that 0 = Hφp = Hpφ1. Since 1 is a separating vector for Hank, it follows that
Hpφ = 0 and thus Aθ(S)p(S) = 0. Multiplying the last display through by p(S)
yields

v(S∗)Ap(S)u(S) = Ap(S)θ(S) = 0

whenever uv = θ. But now Proposition 5.9 yields Ap(S) ∈ ref Mθ. In view
of Corollary 6.1(1), this means Ap(S) = 0, and we have already observed that
Aθ(S) ∈ Hank. Since p and θ are relatively prime, there exist H∞ functions h and
k such that 1 = ph+θk. Hence A = Ap(S)h(S)+Aθ(S)k(S) = Aθ(S)k(S) ∈ Hank
and we get A ∈ Hank ∩ ref W = W as desired. �
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Computing reflexive closures. Theorem 5.10 can be used to compute reflexive
closures of nonreflexive spaces. For example, (matrices of) operators in W := Mzk

are supported on the top k skew diagonals and hence the same is true for members
of ref W. On the other hand, Example 6.7 shows that all matrices supported on
this triangle do in fact belong to ref W. Since there are precisely k independent
Hankel operators supported on that triangle, the codimension of W in ref W (which
quantifies how nonreflexive W is) is k(k−1)

2 . Theorem 5.10 now tells us how to
compute the reflexive closures of all Hankel spaces having seed zk. The following
result generalizes this analysis.

Corollary 6.14. Suppose θ is an inner function whose singular factor is totally
atomic and set

< := {x⊗ y∗ : f(S∗)x = g(S∗)y = 0 for some pairwise divisor (f, g) of θ}.

(1) ref Mθ is the weak* closed linear span of <.
(2) If W is any weak* closed subspace of Hank with seed θ, then

ref W = W + span<.

Proof. For (1), combine Corollaries 6.1(3) and 6.6.
For (2), apply Theorem 5.10 to the result of Part (1). �

Of course, the description of < can hardly be considered concrete, though Propo-
sition 6.8 helps. The set C given in Corollary 6.15 is is more satisfying in this
respect.

Corollary 6.15. Suppose θ is a Blaschke product and set

C :=

{
zi−1

(1− az)i
⊗ zj−1

(1− az)j
: i, j ∈ N,

(
z − a

1− az

)i+j−1

divides θ

}
.

(1) ref Mθ is the (weak*) closed linear span of C.
(2) If W is any (weak*) closed subspace of Hank with seed θ, then ref W =

W + span C.

Proof. In this case, all pairwise divisors of θ take the form of Proposition 6.8(1).
Thus the set < of the last corollary becomes

< := {x⊗ y∗ : βi(S∗)x = βj(S∗)y = 0 for some Möbius β with βi+j−1 dividing θ}.

But observe that, if β is the Möbius function β(z) = z−a
1−az , then

kernel(βn(S∗)) =
(
(β∗)nH2

)⊥
= span

{
zk

(1− az)k+1
: k = 0, . . . , n− 1

}
,

and thus the span of < equals the span of C. �

Corollary 6.16. If θ is an inner function having a multiple root or a nontrivial
atomic inner factor, then ref Mθ has a non-Hankel member of rank one.

Proof. Since φ|θ implies ref Mφ ⊂ ref Mθ, it suffices to consider the cases when
(1) θ = β2 for β a Möbius transformation vanishing at a ∈ D and
(2) θ = α where α is a singular inner function whose measure is supported at

a single point in T.
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In Case (1) Corollary 6.15 tells us 1
1−az ⊗

z
(1−az)2 ∈ ref Mθ and we know this

operator does not belong to Hank because it is not a scalar multiple of Ra.
In Case (2), Corollary 6.1(2) tells us ref Mθ has a rank-one element which can’t

be Hankel since Mθ itself has no rank-one elements (because θ has no roots). �

Relation to earlier papers. A main goal of our work to this point has been
to identify precisely which (weak* closed) subspaces of Hank are reflexive. The
following summarizes the results we have obtained.

Theorem 6.17. Let W be a weak* closed subspace of Hank, and write θ for
its seed, i.e., Mθ is the largest submodule of Hank contained in W. Consider
the canonical factorization θ = βασ, where β is a Blaschke product, α is a totally
atomic singular inner function and σ is a totally nonatomic singular inner function.
Let µ the singular measure corresponding to the singular inner function σ. Then,

(1) W is reflexive if and only if Mθ is reflexive if and only if Cθ is reflexive if
and only if S(θ) is reflexive.

(2) Mθ is reflexive if and only if Mβ, Mα and Mσ are reflexive.
(3) Mβ is reflexive if and only if β has no repeated roots.
(4) Mα is reflexive if and only if α = 1.
(5) Mσ is reflexive if and only if µ is a BC-vanishing measure.

Earlier proofs of the Jordan model analogues of Parts (3) and (4) can be found
in [29]. (5) depends strongly on Kapustin’s deep work, and is unlikely to be sim-
plified. On the other hand, the proofs we have given of everything except (5) are
independent of existing papers on Jordan models:

• (1) follows from Corollary 5.11 and Theorem 4.5,
• (2) is Corollary 5.3(2),
• the ‘if’ implication of (3) comes from Lemma 5.5 and Corollary 5.3(2),
• the ‘if’ implication of (4) comes from Corollary 5.1,
• the ‘only if’ implications of (3) and (4) result from Corollary 6.16.

In particular, we were able to use operators of rank one to get the negative
content of (3) and (4). Proposition 6.13 explains why such an approach cannot
help with (5).

7. Semi–infinite Dimensional

Let us turn our attention to the so-called semi–infinite dimensional case. First,
for each n ∈ N, let Pn denote the set of all polynomials with degree less than or
equal to n, thought of as a subspace of H2. The space B(Pn,H2) is dual to the
trace class Tr(H2,Pn) via the bilinear form

〈A, T 〉 = trace(AT ), A ∈ B(Pn,H2), T ∈ Tr(H2,Pn).

For n ∈ N and φ ∈ H2 define Hφ : Pn −→ H2 by Hφf = PJ(φf), where P
denotes the orthogonal projection onto H2 and J is the flip operator J(f)(z) :=
f(z). Thus, Hφ is an operator in B(Pn,H2). It is easy to check that the matrix
of Hφ with respect to the canonical bases {zk}nk=0 and {zk}∞k=0, for Pn and H2

respectively, has constant skew–diagonals. Conversely, it is easy to see that all
Hankel operators are of the form Hφ, as above.

Since ‖Hφz
j‖ ≤ ‖φ‖ for j = 0 . . . n with equality for j = 0, it follows that

‖Hφ‖ ≤
√
n+ 1 ‖φ‖ =

√
n+ 1 ‖Hφ(1)‖, φ ∈ H2.(3)
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We denote the set of all Hankel operators in B(Pn,H2) as Hank(Pn,H2).
For each Hφ ∈ Hank(Pn,H2), f ∈ Pn and g ∈ H2, a straightforward calculation

shows that

〈Hφ, f ⊗ g〉 = 〈Hφf, g〉 =
1
2π

∫ π

−π
φ(eiθ)f(eiθ)g∗(eiθ)dθ.

Every element T of Tr(H2,Pn) has a unique expression T =
∑n
j=0 z

j ⊗ gj(z),
and we define its cosymbol Γ(T ) :=

∑n
j=0 z

jg∗j (z). The preceding display then
generalizes to

〈Hφ, T 〉 =
1
2π

∫
φΓ(T ), φ ∈ H2, T ∈ Tr(H2,Pn).(4)

Proposition 7.1. (1) For each g ∈ H2, we have Γ(1⊗ g∗) = g.
(2) Γ is bounded and has range H2.
(3) The kernel of Γ is the preannihilator of Hank(Pn,H2)

Proof. (1) is a matter of definition and (2) is easy to check. (3) follows from
Equation (4). �

Theorem 7.2. Let n ∈ N. The space Hank(Pn,H2) is transitive and elementary.

Proof. Suppose f ⊗ g ∈ Hank(Pn,H2)⊥. Then Equation (4) yields
∫
φfg∗ = 0 for

all φ ∈ H2. But this means fg∗ ≡ 0 whence f = 0 or g = 0. Thus Hank(Pn,H2)⊥
has no rank-one members and Hank(Pn,H2) is transitive.

Given T ∈ Tr(H2,Pn), we can write T = 1 ⊗ (Γ(T ))∗ + [T − 1 ⊗ (Γ(T ))∗].
Since the bracketed expression is in the kernel of Γ, we have Tr(H2,Pn) = F1 +
Hank(Pn,H2)⊥ and Hank(Pn,H2) is elementary. �

In particular, an appropriate version of Proposition 2.5 (in our semi-infinite
dimensional setting) tells us no proper subspace of Hank(Pn,H2) is transitive.

We now study subspaces of Hank(Pn,H2). Because Pn is finite-dimensional,
every norm closed linear manifold in B(Pn,H2) is automatically weak* closed, so
we need not worry about the latter topology. Equation (3) shows that the symbol
map is is a Banach space isomorphism between H2 and Hank(Pn,H2). Moreover,
taking perps relative to the bilinear form

〈f, g〉 =
1
2π

∫
fg, f ∈ H2, g ∈ H2

sets up a one-to-one correspondence between subspaces of H2 and subspaces of
H2. Thus the companion spaces of the following definition are all subspaces of
Hank(Pn,H2), and every subspace of Hank(Pn,H2) is accounted for in this way.

Definition 7.3. The companion space to a subset N of H2 is defined as

Cn(N) := {Hφ ∈ Hank(Pn,H2) :
∫
φu = 0 for each u ∈ N}.

For an individual u ∈ H2, we write Cnu := Cn({u}).

In particular, Cnu is the most general hyperplane in Hank(Pn,H2).

Lemma 7.4. Let n ∈ N, f ∈ Pn, g ∈ H2 and N ⊂ H2.
(1) In order that a trace class operator T belong to (Cn(N))⊥ it is necessary

and sufficient that Γ(T ) belong to the closed linear span [N ] of N .
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(2) In particular, f ⊗ g ∈ (Cn(N))⊥ if and only if fg∗ belongs to [N ].

Proof. For necessity in (1), assume Γ(T ) ∈ [N ] and let Hφ ∈ Cn(N). By definition,
the last statement implies

∫
φu = 0 for all u ∈ N . Thus

∫
φΓ(T ) = 0 as well,

whence 〈Hφ, T 〉 = 0 by Equation 4. Thus T ∈ (Cn(N))⊥ as required.
For the converse, suppose Γ(T ) /∈ [N ] and choose φ ∈ H2 with

∫
φu = 0 for all

u ∈ N but
∫
φΓ(T ) 6= 0. The last two conditions respectively mean Hφ ∈ Cn(N),

but 〈Hφ, T 〉 6= 0 and we have shown that T /∈ (Cn(N))⊥.
(2) is a special case of (1) since Γ(f ⊗ g) = fg∗. �

Corollary 7.5. Let n ∈ N, f ∈ Pn, g ∈ H2 and u ∈ H2. Then f ⊗ g ∈ (Cnu )⊥ if
and only if there exists λ ∈ C with fg∗ = λu.

Note also that B(P0,H2) is reflexive and elementary (thus every subspace is
reflexive [1, Proposition 2.10]). The main result of this section is the analog of
Theorem 1.3 in the semi–infinite dimensional setting.

Theorem 7.6. Suppose n ∈ N and u ∈ H2. Then Cnu is reflexive if and only if the
inner factor of u is a Blaschke factor with no repeated roots.

The following lemma depends on the fact that 1 is a strictly separating vector
for Hank(Pn,H2) (Equation (3)). Whence this argument cannot be used in the
infinite dimensional setting or the finite dimensional setting!

Lemma 7.7. Let M be a subspace of Hank(Pn,H2). The following statements are
equivalent:

(1) The space M is reflexive,
(2) If A1 = 0, and A ∈ ref M, then A = 0.

Proof. Assume that (1) holds, A1 = 0, and A ∈ ref M. Since A ∈ M we have that
A is Hankel, whence A = 0 since 1 is a separating vector.

Now assume that (2) holds and that A ∈ ref M. We must show that A ∈ M.
Since A ∈ ref M we have that A1 ∈ M(1), by definition of reflexivity. This amounts
to saying that there exist a sequence of operators {An} in M with ‖An1−A1‖ → 0.
This implies that the sequence {An1} is Cauchy, and since 1 is a strictly separating
vector, that {An} is also a Cauchy sequence. Since An ∈ M and M is closed, it
follows that there exists an operator A0 ∈ M ⊂ ref M with An → A0. Hence,
we have that (A − A0)1 = 0 and A − A0 ∈ ref M. The hypothesis implies that
A−A0 = 0. Therefore, A = A0 ∈ M. �

Our technique for showing hyperplanes of Hankel operators to be nonreflexive
is to exhibit non-Hankel operators in their reflexive closure. We should remind the
reader that we use Pn to denote the operator Pn : H2 −→ Pn, the orthogonal
projection onto the polynomials of degree at most n.

Proposition 7.8. Let n ∈ N and fix a ∈ D. Then the non-Hankel rank-one operator
z

(1−az)2 ⊗ Pn
1

1−az belongs to the reflexive closure of Cn((z − a)2H2).

Proof. Suppose f ∈ Pn and g ∈ H2 with f ⊗ g ∈ (Cn((z − a)2H2))⊥. Then, by
Lemma 7.4, fg∗ has a repeated root at a. Notice that〈

z

(1− az)2
⊗ Pn

1
1− az

, f ⊗ g

〉
=
〈
f, Pn

1
1− az

〉 〈
z

(1− az)2
, g

〉
=
〈
f,

1
1− az

〉 〈
g∗,

z

(1− az)2

〉



26 EDWARD AZOFF, RUBÉN A. MARTÍNEZ-AVENDAÑO, AND JAMES SOLAZZO

and since 1
1−az acts as a reproducing kernel in Pn while z

(1−az)2 is a reproducing
kernel for the first derivative in H2, we then have that〈

1
1− az

⊗ Pn
z

(1− az)2
, f ⊗ g

〉
= f(a)g∗′(a).

But if fg∗ has a repeated root at a then either f or g∗′ has a root at a, which means
the previous equation equals zero. �

Proposition 7.9. Let n > 0. Suppose σ is a nontrivial singular inner function.
Choose r to be a nonzero member of (σ∗H2)⊥ (necessarily nonconstant). Then the
non-Hankel operator r ⊗ 1 belongs to the reflexive closure of Cn(σH2).

Proof. Suppose f ∈ Pn and g ∈ H2 with f ⊗ g ∈ (Cn(σH2))⊥. Then σ divides
fg∗ by Lemma 7.4. Since f ∈ Pn, the singular inner function σ must divide g∗.
Since σ∗ divides g, it follows that g ∈ σ∗H2 and thus 〈r, g〉 = 0. Notice then that
〈r ⊗ 1, f ⊗ g〉 = 〈f, 1〉 〈r, g〉 = 0. That r ⊗ 1 is not Hankel is clear since r is not
constant (look at its matrix). �

The following proposition isolates the function theory needed in applying Lemma
7.7 in the proof of Theorem 7.11. If a ∈ D \ {0} let ba(z) = |a|

a
a−z
1−az , and if a = 0

let ba(z) = z.

Proposition 7.10. Let F ⊂ H2 and consider the following subspace of H2

N :=

[{
u(z)

1− bz

}
b∈D

,

{
u(z)
z − c

}
u(c)=0

: u ∈ F

]
.

Suppose β := gcd{inner factor of u : u ∈ F} is a Blaschke product with no repeated
roots. Then N = H2.

Proof. First observe that F ⊂ N . For each u ∈ F we have that[{
u(z)

1− bz

}
b∈D

]
=
[
{znu(z)}n∈N

]
and

z
u(z)
z − c

= u(z) + c
u(z)
z − c

whenever u(c) = 0.

Hence, N ⊂ H2 is invariant under multiplication by z and by Beurling’s Theorem
N = φH2 for some inner function φ. Since φ must divide each u ∈ F , we see it
must divide β, and since φ divides u(z)

z−c for each root c of β, we conclude that φ has
no roots at all and hence must be constant. �

Theorem 7.11. Let K be a subset of H2, and take γ to be the greatest common
divisor of the inner factors of members of K. Then the following are equivalent.

(1) The companion space M of K is reflexive.
(2) γ is a Blaschke product without repeated roots.

Proof. Suppose first that γ has a repeated root a. Then K ⊂ (z − a)2H2 so
Cn((z− a)2H2) ⊂ M. By Proposition 7.8, we know Cn((z− a)2H2) is nonreflexive,
so the larger space M cannot be reflexive either. Similarly, if γ has a non trivial
singular inner factor σ, then M contains the nonreflexive space Cn(σH2) and hence
is nonreflexive as well.
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For the converse, assume γ is a Blaschke product with no repeated roots and let
A ∈ ref M. Assume that A1 = Az = · · · = Azk = 0 for some fixed k, 0 ≤ k < n.
We will show that Azk+1 = 0. Then by induction we will get that, if A1 = 0, then
A = 0. Whence M will be reflexive by Lemma 7.7.

Given a, b ∈ D, and u ∈ K, we have by Lemma 7.4 that

(1− az)k(1− bz)⊗ u∗(z)
(1− az)k(1− bz)

∈ M⊥

and, since A ∈ ref M, it follows that

A(1− az)k(1− bz) ⊥ u∗(z)
(1− az)k(1− bz)

.

The induction hypothesis then implies, for nonzero a, b ∈ D, that

Azk+1 ⊥ u∗(z)
(1− az)k(1− bz)

.

But since
∥∥∥ 1

(1−az)k − 1
∥∥∥
∞
→ 0 as a→ 0, we have that∥∥∥∥ u∗(z)

(1− az)k(1− bz)
− u∗(z)

(1− bz)

∥∥∥∥
2

→ 0, as a→ 0.

Hence,

Azk+1 ⊥ u∗(z)
1− bz

for all b ∈ D (the case b = 0 obtained by taking the limit as b→ 0.)
Using similar reasoning, but starting with the fact that, for c ∈ D with u(c) = 0,

the operator

(1− az)k(z − c)⊗ u∗(z)
(1− az)k(z − c)

∈ M⊥

for all a ∈ D, we obtain that Azk+1 ⊥ u∗(z)
z − c̄

whenever u(c) = 0. Thus the vector

Azk+1 is perpendicular to the space N , as defined in Proposition 7.10. But N = H2

by that Proposition and thus Azk+1 = 0.
By induction A = 0 and therefore M is reflexive. �

Proof of Theorem 7.6: Set K := {u} in Theorem 7.11. �

Proof of Theorem 1.4: The equivalency of conditions (2) and (3) is just Theo-
rem 7.6. Now, choose K ⊂ H2 such that M = Cn(K) in Theorem 7.11 to obtain
the equivalency of (1) and (3). �

8. Finite Dimensional

We now consider the finite dimensional setting. For each n ∈ N we let Pn :=
{p ∈ C[z] : deg p ≤ n}. Given m,n ∈ N and φ ∈ span{1, z, . . . , zm+n} define
Hφ : Pn → Pm as

Hφf = PmJ(φf),
where Pm denotes the orthogonal projection onto Pm, and J is the flip operator
J(p)(z) := p(z). Thus, Hφ is an operator in B(Pn,Pm) whose matrix relative to the
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standard (polynomial) bases has constant skew–diagonals, and clearly all Hankel
operators arise in this manner. The full space of Hankel operators in B(Pn,Pm) will
be denoted by Hank(Pn,Pm). In this case there is a one-to-one relation between a
Hankel operator and its symbol.

Notice also that for each Hφ ∈ Hank(Pn,Pm), f ∈ Pn and g ∈ Pm, we have
that

(5) 〈Hφf, g〉 =
1
2π

∫ π

−π
φ(eiθ)f(eiθ)g∗(eiθ)dt,

Again, 〈Hφf, g〉 only depends on the product fg∗ and not on the individual factors
f and g∗.

The following theorem is proved for the n × n case in [1, Example 3.4]. Using
the exact same argument (or adapting arguments from the previous sections), one
can show the following.

Theorem 8.1. Let n,m ∈ N.
(1) Hank(Pn,Pm) has dimension n+m+ 1.
(2) Hank(Pn,Pm) is transitive.
(3) Hank(Pn,Pm) is elementary.

In [1, Proposition 4.7], it is shown that if a subspace M of B(Pn,Pm) is transitive,
then dim M ≥ n + m + 1. Therefore, no proper subspace of Hank(Pn,Pm) can
be transitive; the same conclusion follows from a slight modification of Part 2 of
Corollary 3.3.

Definition 8.2. Let n,m ∈ N. For a polynomial u ∈ Pm+n we define Cm,nu in
Hank(Pn,Pm) as

Cm,nu :=
{
Hφ ∈ Hank(Pn,Pm) :

1
2π

∫ π

−π
φ(eiθ)u(eiθ)dθ = 0

}
.

Since, dimHank(Pn,Pm) = dimPm+n, this is the most general hyperplane in
Hank(Pn,Pm).

Lemma 8.3. Let m,n ∈ N, f ∈ Pn and g ∈ Pm. Then, f ⊗ g ∈ (Cm,nu )⊥ if and
only if fg∗ = λu for some λ ∈ C

Proof. Assume fg∗ = λu for some λ ∈ C and let Hφ ∈ Cm,nu . By definition, the
last statement implies

∫
φu = 0. Thus

∫
φfg∗ = 0 as well, whence 〈Hφf, g〉 = 0 by

Equation (5). Thus f ⊗ g ∈ (Cm,nu )⊥ as required.
Conversely, assume fg∗ /∈ [u]. As in Lemma 7.4, choose φ ∈ span{1, z, . . . , zm+n}

such that
∫
φu = 0 but

∫
φfg∗ 6= 0. It then follows that while Hφ ∈ Cm,nu also

〈Hφ, f ⊗ g〉 6= 0, and hence f ⊗ g /∈ (Cm,nu )⊥. �

Proposition 8.4. Fix m,n ∈ N and let u ∈ Pm+n. Then
(1) if deg u < m+ n− 1, then Cm,nu is not reflexive,
(2) if u has a repeated root, then Cm,nu is not reflexive.

Proof. Let f ∈ Pn and g ∈ Pm with f ⊗ g ∈ (Cm,nu )⊥ and thus fg∗ = λu.
Let us show (1). Observe that the rank-one operator zm−1 ⊗ zn is not a Hankel

operator. However, if the degree of the polynomial u is strictly less than m+n− 1
and fg∗ = λu, then either

(a) the degree of f equals n, which implies that the degree g is less than or
equal to m− 2,
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(b) or the degree of f is strictly less than n.
In either case, we have that f ⊗ g is orthogonal to zm−1⊗ zn. That is, the reflexive
closure of Cm,nu contains a non-Hankel operator.

To show (2), suppose that u has a repeated root a, that is (z − a)2|u which
implies that either (z − a)2 | f or (z − a) | g∗. Let us define

x :=
m∑
k=0

akzk and y :=
n−1∑
k=0

(k + 1)akzk+1.

Direct computation confirms that x acts as a reproducing kernel for evaluation at
a while y acts as a reproducing kernel for derivative evaluation at a:

〈u, x〉 = u(a), u ∈ Pm; 〈v, y〉 = v′(a), v ∈ Pn.
We will show that f ⊗g is orthogonal to the non-Hankel rank-one operator x⊗y

(to see that x⊗ y is a non-Hankel operator just observe that 〈(x⊗ y)1, z〉 = 0 but
〈(x⊗ y)z, 1〉 = 1 and thus its matrix is not constant on the skew-diagonals).

Thus we have 〈x⊗ y, f ⊗ g〉 = 〈x, g〉 〈f, y〉 = g∗(a)f ′(a) = 0. Hence the non-
Hankel operator x⊗ y is in the reflexive closure of Cm,nu and we have that Cm,nu is
not reflexive. �

The converse of Proposition 8.4 is the main result of this section.

Theorem 8.5. Fix m,n ∈ N and let u ∈ Pm+n. If the polynomial u has no repeated
roots and deg u ≥ m+ n− 1, then Cm,nu is reflexive.

The operators in the next definition can be thought of as “analytic Toeplitz
operators acting between different spaces”. Given φ ∈ P1 we let

Tφ : Pn−1 −→ Pn,
be the linear operator defined by Tφ(f) = φf .

Proposition 8.6. Let B ∈ B(Pn,Pm) where n ≥ 2. The following are equivalent:
(1) B ∈ Hank(Pn,Pm),
(2) BTφ ∈ Hank(Pn−1,Pm) for all φ ∈ P1,
(3) BT1, BTz ∈ Hank(Pn−1,Pm).

Proof. (1) implies (2) implies (3) is clear. It remains to prove that (3) implies (1).
It suffices to show that each entry of the matrix associated to the operator B, with
respect to standard orthonormal bases for Pm and Pn, is a Hankel matrix. For
1 ≤ k ≤ n− 1 and 1 ≤ l ≤ m we have that〈

Bzk, zl−1
〉

=
〈
(BT1)zk, zl−1

〉
=

〈
(BT1)zk−1, zl

〉
=

〈
Bzk−1, zl

〉
.

Now, for k = n and 1 ≤ l ≤ m we have that〈
Bzk, zl−1

〉
=

〈
(BTz)zk−1, zl−1

〉
=

〈
(BTz)zk−2, zl

〉
=

〈
Bzk−1, zl

〉
.

Therefore the associated matrix of B is a Hankel matrix which is equivalent to
B ∈ Hank(Pn,Pm). �
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Proposition 8.7. Let u ∈ Pm+n−1 and φ ∈ P1. Then Cm,nuφ Tφ ⊂ Cm,n−1
u .

Proof. Let Hψ ∈ Cm,nuφ . Then
∫
ψuφ = 0. Since Hψφ = HψTφ and

∫
(ψφ)u = 0 we

have that HψTφ ∈ Cm,n−1
u as desired. �

Before proving Theorem 8.5, we show a special case of it.

Proposition 8.8. C1,1
u is reflexive if u has no repeated roots and deg u ≥ 1.

Proof. C1,1
u is 2-dimensional, so dim((C1,1

u )⊥) = 4 − 2 is 2, as well. Hence showing
C1,1
u is reflexive amounts to finding two linearly independent rank-one members of

(C1,1
u )⊥.
First suppose that deg u = 2, that is u(z) = (z − a)(z − b) for distinct values

a, b ∈ C. Then by Lemma 8.3 we have that

(z − a)⊗ (z − b) (z − b)⊗ (z − a)

are linearly independent rank-one members of (C1,1
u )⊥.

Now suppose that deg u = 1, that is u(z) = (z − a) for some a ∈ C. Then we
have that, as before,

(z − a)⊗ 1 1⊗ (z − a)

are linearly independent rank-one members of (C1,1
u )⊥. �

Proof of Theorem 8.5: Consider the following statement:

P (m,n) : if u ∈ Pm+n has no repeated roots and deg u ≥ m+ n− 1,

then Cm,nu is reflexive.

Let m,n ∈ N and assume that P (m,n) is true. Now let u ∈ Pm+n+1 be such that
deg u ≥ m + n and u has no repeated roots, let B ∈ ref Cm,n+1

u and let a 6= b be
two distinct roots of u. Then

BTz−a ∈
(
ref Cm,n+1

u

)
Tz−a ⊂ ref

(
Cm,n+1
u Tz−a

)
= Cm,nu

z−a

⊂ Hank(Pn,Pm),

where we are using the fact that if M is a subspace of operators and T an operator,
then (ref M)T ⊂ ref (MT ), (which can be found in [2] Lemma 4.5), combined with
Proposition 8.7 and the reflexivity of Cm,nu

z−a
.

Similarly, BTz−b ∈ Hank(Pn,Pm). Since 1, z ∈ span {z − a, z − b} we have
that BT1, BTz ∈ Hank(Pn,Pm). Hence by Proposition 8.6, the operator B ∈
Hank(Pn+1,Pm). Thus Cm,n+1

u is reflexive and P (m,n + 1) is true. So we have
that

∀m,n ∈ N [P (m,n) =⇒ P (m,n+ 1)].(6)

By Proposition 8.8 we have that P (1, 1) is true and (6) implies that for all n ∈ N
that P (1, n) is true. Now observe that (Cm,nu )∗ = Cn,mu∗ . Thus by symmetry we
have that for all m ∈ N that P (m, 1) is true. Applying (6) again we get that for all
m,n ∈ N that P (m,n) is true. �

We will need the following classical result.
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Theorem 8.9 (Bertini’s Theorem). Suppose p(z) and q(z) are polynomials (over
C) with no common roots. Then p(z)+ tq(z) has a repeated root for at most finitely
many t ∈ C.

Proof. If a is a repeated root of the polynomial p(z) + tq(z) for some t ∈ C, then
p(a)q′(a)− p′(a)q(a) = 0. Thus there are at most deg (p) + deg (q)− 1 numbers a
satisfying this equation and thus only a finite number of a’s can be repeated roots
for p(z) + tq(z), regardless of t.

If the same a is a repeated root for the polynomials p(z)+ tq(z) and p(z)+ sq(z)
for some s, t ∈ C such that s 6= t, then, p and q share a common root, which
contradicts the hypothesis. Hence, once an element of the finite set described
above is a repeated root of p(z) + tq(z), it cannot be a repeated root of any other
p(z) + sq(z), t 6= s. Hence, the polynomial p(z) + tq(z) has a repeated root for at
most finitely many t ∈ C. �

Proposition 8.10. Let F ⊂ C be a finite nonempty set and suppose k > 1. If
w1, . . . , wk are relatively prime polynomials, i. e. gcd(w1, . . . , wk) = 1, then there
exist t2, . . . , tk ∈ C such that the polynomial

w1 + t2w2 + · · ·+ tkwk

has no repeated roots, no roots in F , and degree ≥ deg(w1).

Proof. Let F ⊂ C be a finite nonempty set. Let w1, w2 be polynomials which are
relatively prime.

If for some a ∈ F we can choose s 6= t ∈ C such that a is a root of both the
polynomials w1 + sw2 and w1 + tw2 then a would be a common root of w1 and w2,
contradicting our assumption that w1 and w2 are relatively prime polynomials. It
follows from the finiteness of F that there can only be finitely many t for which
w1 + tw2 has a root in F . In view of Bertini’s Theorem, for all but finitely many
t ∈ C, the polynomial w1 + tw2 has no repeated roots as well as no roots in F .
Also, there can be at most one t for which deg(w1 + tw2) < deg(w1).

Now assume k > 2 and that the Proposition holds for relatively prime (k − 1)-
tuples of polynomials. Suppose we are given relatively prime polynomials w1, ..., wk.
Set g := gcd(w1, . . . , wk−1), and take F ′ the set of roots of wk. Applying (part
of) the inductive hypothesis, we obtain t2, ..., tk−1 ∈ C such that the polynomial
w1
g +t2w2

g + · · ·+tk−1
wk−1
g has no roots in F ′ and its degree is at least deg w1

g . Since
g has no roots in common with wk, we conclude that w1 + t2w2 + · · ·+ tk−1wk−1 is
relatively prime to wk. An application of the first paragraph of the proof completes
the inductive argument. �

In view of the analogous statement to Proposition 2.5 in our context, any reflexive
subspace of a reflexive hyperspace of Hank(Pn,Pm) will also be reflexive. The
following generalized version of Theorem 8.5 shows that conversely every reflexive
subspace of Hank(Pn,Pm) is contained in a reflexive hyperspace.

Corollary 8.11. Fix m,n ∈ N, let u1, . . . , uk ∈ Pm+n, and set r = gcd(u1, . . . , uk).
Then the following are equivalent:

(1)
k⋂
j=1

Cm,nuj
is reflexive.

(2)
k⋂
j=1

Cm,nuj
is contained in a reflexive hyperspace of Hank(Pn,Pm).
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(3) Some ui has degree at least m+ n− 1 and r(z) has no repeated roots.

Proof. We will first show that (1) implies (3). Suppose that r has a repeated root
and and let a ∈ C be such a root. Consider the polynomials k0, k1 ∈ Pn+m defined
to have the property that

1
2π

∫ π

−π
k0(eiθ)p(eiθ)dθ = p(a) and

1
2π

∫ π

−π
k1(eiθ)p(eiθ)dθ = p′(a)

(these polynomials are easily seen to exist: see the proof of Proposition 8.4).
Since (z − a)2 divides u1, u2, . . . , uk, we have that for all j, Hk0

and Hk1
belong

to Cm,nuj
. Thus

span {Hk0
,Hk1

} ⊂
k⋂
j=1

Cm,nuj
,

whence ref (span {Hk0
,Hk1

}) is contained in ref

(
k⋂
j=1

Cm,nuj

)
. But one can easily

check that the non-Hankel operator k0 ⊗ k1 ∈ ref (span {Hk0
,Hk1

}). Therefore

ref

(
k⋂
j=1

Cuj

)
contains a non-Hankel member, so

k⋂
j=1

Cm,nuj
is not reflexive.

If every ui has degree less than m + n − 1, then one can check, in a similar

way to the arguments above, that ref

(
k⋂
j=1

Cuj

)
contains the non-Hankel operator

zm−1 ⊗ zn and
k⋂
j=1

Cm,nuj
is not reflexive.

We will now show that (3) implies (2). When k = 1, we have r = u1 and it
suffices to apply Theorem 8.5. Thus assume k > 2 and for definiteness that u1 has
degree at least m+ n− 1.

Let r = gcd(u1, ..., uk) and suppose that r has no repeated roots. Next, let
vj = uj/r for j = 1, ..., k. Thus, by Proposition 8.10 we can choose t2, ..., tk ∈ C
such that

v1 + t2v2 + · · ·+ tkvk

has no repeated roots, no roots in common with r and its degree is at least that of
v1. Multiplying through by r, we see that

u1 + t2u2 + · · ·+ tkuk

has no repeated roots and has degree at least m+ n− 1.
Thus Theorem 8.5 tells us Cm,nu1+t2u2+···+tkuk

is reflexive.
Finally (2) implies (1) since Hank(Pn,Pm) is elementary. �

Proof of Theorem 1.5: Observe that Corollary 8.11 is just Theorem 1.5. �
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Centro de Investigación en Matemáticas, Universidad Autónoma del Estado de Hi-

dalgo, Pachuca, Hidalgo, 42184, Mexico
E-mail address: rubenma@uaeh.edu.mx

Department of Mathematics, University of Georgia, Athens, GA 30602-7403
E-mail address: solazzo@math.uga.edu


