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Abstract

In this paper we construct complex equiangular tight frames (ETFs). In par-
ticular, we study the grammian associated with an ETF whose off-diagonal
entries consist entirely of fourth roots of unity. These ETFs are classified, and
we also provide some computational techniques which give rise to previously
undiscovered ETFs.
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1. Introduction

Recently several different methods for constructing equiangular tight frames
(ETFs) have been explored. In [11], a partial list of pairs (n, k), which ad-
mit complex ETFs is, determined by studying analysis operators satisfying the
property that each entry of the scaled matrix

√
kV ∗ (V is an analysis operator)

is a pth root of unity. A correspondence between difference sets and equiangular
cyclic frames is given in [8]. Bodmann, Paulsen, and Tomforde, [2], provide
necessary and sufficient conditions for the existence of Seidel matrices with two
eigenvalues whose off-diagonal entries are all cube roots of unity. Finding Sei-
del matrices with two eigenvalues is known to be equivalent to the existence of
ETFs, see [7].

In this paper, we study the existence and construction of Seidel matrices with
two eigenvalues (equivalently ETFs) whose off-diagonal entries are all fourth
roots of unity. Some of our methods are similar to that of [2]. However, unlike
the cube roots of unity case, we are able to show that a certain class of real skew-
symmetric matrices yield complex ETFs. In addition, we provide necessary
and sufficient conditions for a certain class of fourth root Seidel matrices to
have exactly two eigenvalues. It is worth noting that in [2], the authors take
advantage of known results about certain regular directed graphs to construct
complex ETFs. Although the fourth roots of unity case can be translated into
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a problem in graph theory, we were unable to find any known results in the
literature to construct complex ETFs of this type.

This paper is organized as follows. We complete the introduction by defining
a Seidel matrix and stating a crucial result relating Seidel matrices to ETFs.
Section 2 describes our extension of Seidel matrices to include fourth roots of
unity and some direct consequences of this generalization. In Section 3, we use
real skew-symmetric matrices to construct complex ETFs. Section 4 covers the
construction of complex ETFs which do not arise from previously known ETFs
or real skew-symmetric matrices.

1.1. Seidel Matrices and ETFs
Both of the papers [3] and [9] provide an excellent introduction to the general

theory on frames as well as a good read. However, for a detailed discussion on
equiangular frames, the motivation behind this paper, the authors recommend
reading [1, 7].

The following definition and theorem are due to Holmes and Paulsen [7].

Definition 1.1. An n× n self-adjoint matrix Q such that qii = 0 and |qij | = 1
for all i 6= j is called a Seidel matrix.

Note that some authors refer to a Seidel matrix as a signature matrix.

Theorem 1.2 (Theorem 3.3 of [7]). Let Q be a self-adjoint n × n matrix
with qii = 0 and |qij | = 1 for all i 6= j. Then the following are equivalent:

1. Q is the Seidel matrix of an ETF,
2. Q2 = (n− 1)I + µQ for some necessarily real number µ,
3. Q has exactly two eigenvalues.

The focus of this paper is to construct Seidel matrices with exactly two
eigenvalues whose off diagonal entries are all fourth roots of unity. We shall see
that condition (2) in Theorem 1.2 is particularly useful for the computational
aspects of this construction.

A Seidel matrix Q satisfying any of the three equivalent conditions in The-
orem 1.2 yields several useful parameters. It is shown in [7], if λ1 < 0 < λ2

are Q’s two eigenvalues, then the parameters n, k, µ, λ1, and λ2 satisfy the
following properties:

µ = (n− k)

√
n− 1

k(n− k)
= λ1 + λ2, k =

n

2
− µn

2
√

4(n− 1) + µ2
(1)

λ1 = −
√
k(n− 1)
n− k

, λ2 =

√
(n− 1)(n− k)

k
, n = 1− λ1λ2.
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2. Preliminaries

We begin by introducing some new definitions and preliminary results which
will prove useful throughout this discussion.

Definition 2.1. A self-adjoint matrix with all diagonal entries equal to zero
and all nondiagonal entries equal to complex fourth roots of unity will be called
a fourth root Seidel matrix. A fourth root Seidel matrix S is said to be in
standard form if all of the entries in the first row and column are one, except
for s11.

Note that conjugating by the appropriate diagonal matrix will transform a
fourth root Seidel matrix into standard form. This process leads to an equiv-
alence relation on fourth root Seidel matrices where the matrices in standard
form are class representatives.

Theorem 1.2 connects equiangular frames to Seidel matrices with two eigen-
values. This motivates the following proposition (and subsequent corollary)
which is similar to Proposition 2.4 of [2]. Notice that an n×n fourth root Seidel
matrix S with two eigenvalues satisfies the equation

S2 = (n− 1)I + µS

for some real number µ.

Proposition 2.2. Let S be a fourth root Seidel matrix in standard form satis-
fying the equation

S2 = (n− 1)I + µS

and xj = #{k|Skj = 1}. Then ej := n+µ−2xj

2 is the number of entries in the jth

column equal to i, for j > 1. Furthermore, in the jth column, ej is the number
of entries equal to −i, and the number of entries equal to −1 is n−µ−2ej−2

2 .

Proof. For 1 < j ≤ n, define

yj := #{k|Skj = i}
zj := #{k|Skj = −1}
tj := #{k|Skj = −i}.

For 1 < j ≤ n,

µ = µS1j = [(n− 1)I + µS]1j =
[
S2
]
1j

= (xj − 1) + yji+ zj(−1) + tj(−i)

which gives
(xj − µ− 1− zj) + (yj − tj)i = 0.

Thus, yj = tj and zj = xj − µ − 1. Since the jth column has n − 1 nonzero
entries, we have

xj + yj + zj + tj = n− 1.

Substituting for zj and tj , we are left with

yj =
n+ µ− 2xj

2
.
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Corollary 2.3. The difference between the number of 1′s and the number of
−1′s in a column is µ+ 1. Furthermore, µ is an integer.

Proof.

xj −
n− µ− 2ej − 2

2
= xj −

n− µ− (n+ µ− 2xj)− 2
2

= xj − (−µ+ xj − 1)
= µ+ 1.

Searching for fourth root Seidel matrices using brute force is only feasible
for “small” values of n. Given a particular n, the following proposition bounds
the possible values of µ.

Proposition 2.4. Let S be an n×n fourth root Seidel matrix in standard form
satisfying S2 = (n− 1)I + µS. Then n− 2 > µ > 2− n.

Proof. By Corollary 2.3, µ + 1 is the number of ones minus the number of
negative ones in all columns except possibly the first column. The largest this
can be is n − 1 and the smallest is 3 − n. So n − 1 ≥ µ + 1 ≥ 3 − n or
n− 2 ≥ µ ≥ 2− n.

Note that Proposition 2.2 also implies that µ is even if and only if n is even,
and Proposition 2.4 gives us a list of possible values of µ for each n. Evaluating
Equation (1) at possible values of n and µ and checking to see if k is an integer,
gives the possible values for n, µ and k. The values corresponding to 4 < n ≤ 30
are listed in Table 1.

n µ k n µ k

4 0 2 18 0 9
6 0 3 20 0 10
8 0 4 22 0 11
10 0 5 24 0 12
12 0 6 26 0 13
14 0 7 -6 21

-2 10 28 0 14
16 0 8 6 7

2 6 30 0 15

Table 1: Possible 4 < n ≤ 30, µ, k values

3. Constructing Complex ETFs using Real Matrices

Here we present a method for constructing fourth root Seidel matrices from
real skew symmetric matrices whose entries are all ±1. Note that, if A is any
such matrix, then iA is a fourth root Seidel matrix.
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Proposition 3.1. Let A be a real matrix with all diagonal entries equal to zero
and all off diagonal entries equal to ±1 such that AT = −A. Then the standard
form, S, of iA has entries sj,k = ±i for j > 1, k > 1 and j 6= k.

Proof. Let A be a real n× n matrix such that AT = −A, ajj = 0, and all off
diagonal entries are equal to ±1. Fix D as the diagonal matrix with d11 = 1
and djj = −ia1j for j > 1. Then the matrix S = D∗(iA)D is in standard form.
For j > 1, k > 1, and j 6= k,

sjk = d∗jj(iajk)dkk = (ia1j)(iajk)(−ia1k) = ±i.

Corollary 3.2. Let S denote the standard form of a fourth root Seidel matrix
with two eigenvalues.

1. If sj,k = ±1 for j > 1, k > 1, and j 6= k, then S corresponds to a real
equiangular frame.

2. If sj,k = ±i for j > 1, k > 1, and j 6= k, then S corresponds to a complex
equiangular frame arising from a skew symmetric matrix (as described in
Proposition 3.1).

3. If S is does not fit (1) or (2) above then S corresponds to a “truly” complex
equiangular frame.

We will refer to fourth root Seidel matrices with two eigenvalues (and the
corresponding frames) mentioned above as real (R), skew-symmetric (SS),
and truly complex (TC) respectively. We now provide some restrictions on
the existence of fourth root Seidel matrices with two eigenvalues obtained from
skew symmetric matrices which expedite our computer search for these frames.

Proposition 3.3. Let A be a real n× n matrix with two eigenvalues such that
AT = −A, and ajk = ±1 for j 6= k, then −A2 = (n− 1)I.

Proof. Clearly, b = 0 for A to satisfy −A2 = (n− 1)I + b(iA).

The following theorem uses the structure of the fourth root Seidel matrices.

Theorem 3.4. Let A be a real n × n matrix with two eigenvalues such that
AT = −A, and ajk = ±1 for j 6= k, then n = 2 or n ≡ 0 mod 4.

Proof. When n = 2, the matrix (
0 1
−1 0

)
satisfies our conditions.

Suppose n ≥ 4. Without loss of generality, assume a1j = 1 for 2 ≤ j ≤ n
and a23 = 1. For 3 ≤ j ≤ n, define

C++ := #{j|a2j = 1 and a3j = 1}
C+− := #{j|a2j = 1 and a3j = −1}
C−+ := #{j|a2j = −1 and a3j = 1}
C−− := #{j|a2j = −1 and a3j = −1}.
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Since a23 = 1, and the rows of A are orthogonal, we get

C++ + C+− − C−+ − C−− = −1 and
C++ − C+− + C−+ − C−− = 1

by considering the inner product of rows 2 and 3 with row 1. The inner product
of rows 2 and 3 gives the equation

C++ − C+− − C−+ + C−− = −1.

Lastly, the inner product of row 2 with itself gives the equation

C++ + C+− + C−+ + C−− = n− 3.

The relation 4C++ = n− 4 follows from combining the previous four equations.
Since n is an integer, it must be divisible by 4.

Example 3.5. Let

A =


0 1 −1 1
−1 0 −1 −1
1 1 0 −1
−1 1 1 0

 .

Clearly, A satisfies A = −At, and the eigenvalues of A are ±i
√

3. Thus, the
matrix iA satisfies iA = (iA)∗ and has eigenvalues ±

√
3. Interestingly, iA is a

Grammian matrix for the complex equiangular (4, 2) frame.

While Theorem 3.4 tells us where to look for skew-symmetric matrices with
nondiagonal entries equal to ±1, it does not guarantee the existence of any
such matrices. However, example 3.5 does show that such a matrix exists when
n = 4. The following proposition goes further to show that the existence of one
such square matrix of dimension n, guarantees the existence of another with
dimension 2n.

Proposition 3.6. If M is a matrix of dimension n such that MT = −M and
M2 = (1− n)In, then the matrix

N =
(
−M M − In

M + In M

)
satisfies NT = −N and N2 = (1− 2n)I2n.

Proof.

N2 =
(

2 ∗M2 − In 0
0 2 ∗M2 − In

)
=
(

(1− 2n)In 0
0 (1− 2n)In

)
= (1− 2n)I2n.
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Applying Proposition 3.6 to the matrix in Example 3.5 yields an 8 × 8 an-
tisymmetric matrix corresponding to a skew-symmetric frame. Repeatedly ap-
plying this proposition yields frames for n = 4 · 2k where k is any nonnegative
integer. We have also constructed antisymmetric matrices for n = 12 and n = 20
satisfying M2 = (1−n)In yielding two infinite families of frames for n = 12 · 2k
and n = 20 · 2k. Table 2 summarizes our results for fourth root Seidel matrices
with two eigenvalues coming from real matrices.

n µ k R? SS? n µ k R? SS?
4 0 2 N[1] Y (Known) 18 0 9 Y[1] N (Thm. 3.4)
6 0 3 Y[1] N (by Const.) 20 0 10 N[1] Y (by Const.)
8 0 4 N[1] Y (by Const.) 22 0 11 N[1] N (Thm. 3.4)
10 0 5 Y[1] N (by Const.) 24 0 12 N[1] Y (Prop. 3.6)
12 0 6 N[1] Y (by Const.) 26 0 13 Y[1] N (Thm. 3.4)
14 0 7 N[1] N (Thm. 3.4) -6 21 Y[1] N (Prop. 3.3)

-2 10 Y[1] N (Prop. 3.3) 28 0 14 N[1] Y (by Const.)
16 0 8 N[1] Y (Prop. 3.6) 6 7 Y[1] N (Prop. 3.3)

2 6 Y[1] N (Prop. 3.3) 30 0 15 Y[1] N (Thm. 3.4)

Table 2: Possible 1 < n ≤ 30, µ, k values

4. Truly Complex ETFs from Blocks

Consider matrices of the formB0 B1 B2

Bt1 D C
Bt2 C∗ −D

 (2)

where B0 is a 2 × 2 matrix with ones on the off diagonal and zeros on the
diagonal, B1 consists of a row of ones followed by a row of negative ones, B2 is
two rows of ones, D is a n−2

2 ×
n−2

2 Seidel matrix with (n−2
4 − 1) negative ones

in each row, and C is a matrix with entries ±1 or ±i. Analyzing this pattern,
we get the following proposition.

Proposition 4.1. Let A be a matrix of the form described by Equation (2).
Then the following statements are equivalent:

1. A2 = (n− 1)I
2. C is normal, CD = DC, D2 + CC∗ = (n − 1)I − 2J , and the row and

column sums of C are zero.

Proof. Squaring A yields
B2

0 +B1B
T
1 +B2B

T
2 B0B1 +B1D +B2C

∗ B0B2 +B1C −B2D

BT1 A+DBT1 + CBT2 BT1 +D2 + CC∗ BT1 B2 +DC − CD

BT2 B0 + C∗D −DC∗ BT2 B1 + C∗D −DC∗ BT2 B2 + C∗C +D2
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It is clear that the (1, 1)-entry of A2 is the 2 × 2 identity matrix. Since BT1 B2

is the zero matrix, it follows that the (2, 3)-entry of A2 is the zero matrix if and
only if CD = DC. The (2, 2) and (3, 3) entries of A2 equal (n−1)I if and only if
CC∗ = C∗C (C is normal) and D2 +CC∗ = (n− 1)I − 2J . Since B0B1 = B1D
and B0B2 = B2D, it follows that the (1, 2) and (1, 3)-blocks of A2 are the zero
matrix if and only if the row and column sums of C are equal to zero.

Proposition 4.1 has led to the construction of new fourth root Seidel matrices
with two eigenvalues. Using Proposition 4.1, for each matrix D, we can quickly
search for possible matrices C. The blocks D and C are significantly smaller
than the overall matrix. This greatly sped up our search. The results of this
search are summarized in Table 3. The entry of “by Const.” means that a brute
force algorithm was used.

n µ k TC?
4 0 2 N (by Const.)
6 0 3 Y (using Prop 4.1)
8 0 4 N (by Const.)
10 0 5 Y (using Prop 4.1)
12 0 6 Y (by Const.)
14 0 7 Y (using Prop 4.1)

-2 10 Y (by Const.)
16 0 8 Unknown

2 6 Y (by Const.)
18 0 9 Y (using Prop 4.1)
20 0 10 Unknown

Table 3: Possible 1 < n ≤ 20, µ, k values
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