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Abstract

In this paper we demonstrate that there are distinct differences between real and
complex equiangular tight frames (ETFs) with regards to erasures. For example,
we prove that there exist arbitrarily large non-trivial complex equiangular tight
frames which are robust against three erasures, and that such frames come from
a unique class of complex ETFs. In addition, we extend certain results in [1] to
complex vector spaces as well as show that other results regarding real ETFs
are not valid for complex ETFs.
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1. Introduction

In the last few years the search for equiangular tight frames (ETFs) has
become increasingly popular [1, 2, 3, 7, 13, 14, 16, 17]. The main reason for this
increased interest is that ETFs minimize the “error” for two erasures in certain
communication networks [13, 16].

In this paper we extend a result in [1] regarding real ETFs to complex
ETFs. We also demonstrate that there are distinct differences between real and
complex ETFs. For example, the real 3-uniform frames correspond precisely to
the so-called trivial real ETFs [1]. However, we prove that there exist arbitrarily
large non-trivial complex 3-uniform frames, and that such frames come from a
unique class of complex ETFs. Consequently, there exist complex ETFs which
are also robust against three erasures. Furthermore, we show that there exist
only one class of ETFs robust against four erasures, and in some sense this class
is “trivial”.

The paper is organized as follows: Section 2 outlines the relationship between
equiangular tight frames and a certain class of matrices called Seidel matrices,
and Section 3 includes the results and examples. Readers familiar with the work
in [13, 16, 1] may go straight to Section 3.
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2. Preliminaries

It is assumed that the reader is familiar with the basic definitions and the-
orems of frame theory. Both of the papers [4, 15] are recommended as an in-
troduction to the general theory on frames. For a detailed discussion on ETFs,
and much of the motivation behind this paper, the authors further recommend
reading [1, 13].

The following definition and theorem are due to Holmes and Paulsen [13].

Definition 2.1. An n× n self-adjoint matrix Q satisfying qii = 0 and |qij | = 1
for all i 6= j is called a Seidel matrix.

Note that some authors refer to a Seidel matrix as a signature matrix.

Remark 1. When Q is a real Seidel matrix, A = 1/2(Q − I + J) is the adja-
cency matrix for a graph. We consider this graph as associated to the frame
corresponding to Q.

Theorem 2.2 (Theorem 3.3 of [13]). Let Q be a Seidel matrix. Then the
following are equivalent:

1. Q is the Seidel matrix of an equiangular tight frame,
2. Q2 = (n− 1)I + µQ for some necessarily real number µ,
3. Q has exactly two eigenvalues.

Note that condition (2) in Theorem 2.2 is particularly useful for the computa-
tional aspects of constructing a Seidel matrix Q associated with an equiangular
tight frame. Furthermore, a Seidel matrix Q satisfying any of the three equiva-
lent conditions in Theorem 2.2 yields several useful parameters. It is shown in
[13], if λ1 < 0 < λ2 are Q’s two eigenvalues, then the parameters n, k, µ, λ1,
and λ2 satisfy the following properties:

µ = (n− 2k)

√
n− 1

k(n− k)
= λ1 + λ2, k =

n

2
− µn

2
√

4(n− 1) + µ2
(1)

λ1 = −
√
k(n− 1)
n− k

, λ2 =

√
(n− 1)(n− k)

k
, n = 1− λ1λ2.

In order to better understand this relationship between a Seidel matrix Q
with two distinct eigenvalues and its associated equiangular tight frame, we need
the following theorem about finite dimensional frames.

Theorem 2.3. Let F denote the field of real or complex numbers. The family
F = {xi}ni=1 ⊂ Fk is a Parseval frame for Fk if and only if the analysis operator
V associated with F is an isometry.
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For the remainder of this paper it will be assumed that a frame F is a
Parseval frame. We will refer to a Parseval frame with n vectors in Fk as an
(n,k)-frame. If we consider an element x in Fk as a column vector, then the
rows of the analysis operator V are the adjoints of the frame vectors in F .

In [13, 1], they discuss one way to consider a frame as a code. It is their
idea that is the main impetus for the work in this paper. We end this section
by outlining this idea, and then show how Seidel matrices arise in the study of
(n, k)-frames.

Given a vector x in Fk and an (n, k)-frame with analysis operator V , con-
sider the vector V x in Fn as an encoded version of x, and simply decode V x by
applying V ∗. Let E denote the diagonal matrix of m zeros and n−m ones. Thus
the vector EV x is just the vector V x with m-components erased corresponding
to the zeros in the diagonal entries of E. It is said that m-erasures have oc-
curred during transmission. One way to decode the received vector EV x with
m erasures is to again apply V ∗. The error in reconstructing x by multiplying
EV x on the left by V ∗ is given by

‖x− V ∗EV ‖ = ‖V ∗(I − E)V x‖ = ‖V ∗DV x‖

where D is the diagonal matrix of m ones and n − m zeros. The operator
V ∗DV is referred to as the error operator. This is only one of several methods
possible for reconstructing x. However, it is this particular method which led
Bodmann and Paulsen in [1] to introduce the following definition. The quantity
in Definition 2.4 represents the maximal norm of an error operator given that
some set of m erasures occurs.

Definition 2.4. Let Dm denote the set of diagonal matrices that have exactly
m diagonal entries equal to one and n − m entries equal to zero. Given an
(n, k)-frame F , set

e∞m (F ) := max{‖V ∗DV ‖ : D ∈ Dm},

where V is the analysis operator of F , and the norm of the matrix is understood
to be the operator norm.

An (n, k)-frame F in Fk where ‖fi‖ is a constant for each i = 1, ..., n is
commonly referred to as an equal norm frame in the current literature. If F
has the additional property that |〈fj , fi〉| is a constant whenever i 6= j, then F
is an ETF. For the purposes of this paper, we will refer to equal norm frames
as uniform frames and to equiangular tight frames as 2-uniform frames
as in [13]. Both uniform and 2-uniform frames are important since an (n, k)-
frame F minimizes the quantity e∞1 (F ) if and only if F is a uniform frame [5],
and minimizes the quantity e∞2 (F ) if and only if F is a 2-uniform frame [13].
Indeed, uniform and 2-uniform frames are robust against one and two erasures
respectively. In Section 3 we show that there exist a class of complex (n, k)-
frames which are robust against one, two and three erasures. Furthermore, we
show that this is the only such class of frames.
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We end this section by showing the connection between 2-uniform frames
(or ETFs) and Seidel matrices. Suppose F is a 2-uniform frame, and that V is
the associated analysis operator for F . It is easy to show that an (n, k)-frame

F is a uniform frame if and only if ‖fi‖ =
√

k
n for each i = 1, ..., n. It follows

that
V V ∗ =

k

n
I + cn,kQ

where Q is a Seidel matrix and cn,k =
√

k(n−k)
n2(n−1) = |〈fj , fi〉|. It is worth noting

that each n × n Seidel matrix produces a set of equiangular lines in Ck for
some k < n. However, the vectors corresponding to this set of equiangular lines
do not necessarily span Ck, and consequently they may not form a frame for
Ck. This is precisely why Theorem 2.2 is important, it provides necessary and
sufficient conditions in order for a Seidel matrix (real or complex) to produce a
2-uniform frame (ETF).

3. Results

Definition 3.1. Let F be an (n, k)-frame in Fk. We will call F an m-uniform
frame provided that ‖V ∗DV ‖ is a constant for each D in Dm. F is called
a completely m-uniform frame, denoted mc-uniform frame, if F is an
`-uniform frame for each ` = 1, ...,m.

Note, that there is a distinction between a 2-uniform frame F in the above
definition and what the authors in [13, 1] refer to as a 2-uniform frame. Namely,
that a 2-uniform frame in [13, 1] is what we refer to as a 2c-uniform frame.

Along with introducing the error operator stated in Definition 2.4, the au-
thors in [1] developed error estimates of this operator. Their key result for these
estimates is Theorem 5.3, which we restate here.

Theorem 3.2 (Theorem 5.3 of [1]). Let F be a real 2-uniform (n, k)-frame.
Then e∞m ≤ k/n + (m − 1)cn,k with equality if and only if a graph associated
with F contains an induced subgraph on m vertices that is complete bipartite.

The following proposition summarizes results about real 3c-uniform frames
which follow as corollaries to Theorem 5.3 in [1].

Proposition 3.3. Let F and G be real 2c-uniform (n,k)-frames.

1. The graph associated with F either contains an induced complete bipartite
graph on 3 vertices or it is switching equivalent to the complete graph on
n vertices. Consequently, if k < n− 1, then e∞3 (F ) = k

n + 2cn,k.
2. e∞3 (F ) = e∞3 (G).
3. The trivial 2c-uniform (n,k)-frames, corresponding to k = 1 and k = n−1,

are 3-uniform. Conversely, if F is a real 3c-uniform (n,k)-frame, then
either k = 1 or k = n− 1 and it is equivalent to the corresponding trivial
frame.
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In [1], the authors used the connection between real Seidel matrices and
graphs to prove Theorem 3.2 and the results listed in Proposition 3.3. They
extended this connection to Seidel matrices containing third roots of unity using
directed graphs in [2]. Unfortunately, there is no obvious extension of this idea
to connect arbitrary complex Seidel matrices with a currently known class of
graphs. However, the fact that these known proofs of the real do not extend to
the complex case does not mean these statements do not hold. In particular,
we are able to recover an analog for Theorem 5.3 and one of its corollaries.
Furthermore, we provide counterexamples for the other two corollaries.

The following proposition is the key ingredient in determining an upper
bound for e∞m (F ) as well as when the upper bound is saturated. The real case
of Proposition 3.4 below is part of the proof of Theorem 5.3 in [1].

Proposition 3.4. If Q is a Seidel adjacency matrix , then ‖Q‖ is at most n−1.
Moreover, ‖Q‖ = n− 1 if and only if Q = J − I.

Proof. First note that the largest eigenvalue of Jn, the matrix of all ones, is
n. For any vector x in Cn and any S, taking the moduli of all their entries can
only increase the value of the expression

|〈(In +Q)x, x〉|
‖x‖2

. (2)

Since In +Q is a Hermitian matrix ‖In +Q‖ is the maximum of the moduli of
the eigenvalues of In + Q. Let x be an eigenvector of In + Q corresponding to
the eigenvalue, λ, of largest modulus, and let x = (|x1|, ..., |xn|). It follows that:

‖In +Q‖ = |λ| = |〈(In +Q)x, x〉|
‖x‖2

≤ |〈Jnx, x〉|
‖x‖2

≤ ‖Jnx‖‖x‖
‖x‖2

≤ n.

Hence, ‖Q‖ is at most n− 1.
Since n is the largest eigenvalue of matrix J it follows that n − 1 is largest

eigenvalue of Q = J − I. In addition, the expression in (2) can only increase.
Thus, if Q does not equal J − I, then ‖Q‖ < n− 1.

Let Qm denote a compression of Q to m rows and m columns. We say two
Seidel matrices Q and S are switching equivalent if there exists a permutation
matrix P and a diagonal matrix D whose diagonal entries have modulus 1 such
that Q = PDSD−1P−1.

Corollary 3.5. Let F be 2c-uniform (n,k)-frame (real or complex) and let Q
be the associated Seidel matrix of the corresponding projection V V ∗. Then

e∞m (F ) ≤ k

n
+ (m− 1)cn,k (3)

with equality if and only if there is a Qm switching equivalent to Jm − Im.
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Proof. Let F be an equiangular (n,k)-frame and V be the corresponding anal-
ysis operator for F . Since V V ∗ is a positive operator, its compression (V V ∗)m,
where 1 ≤ m ≤ n, to the rows and columns where D has 1’s, is also a positive
operator. Thus, determining the norm of ‖V ∗DV ‖ = ‖DV V ∗D‖ is equivalent
to finding the largest eigenvalue of (V V ∗)m. We further reduce this problem
to finding the largest eigenvalue of Qm, where (V V ∗)m = k

nI + cn,kQm. By
Proposition 3.4,

‖DV V ∗D‖ = ‖D(
k

n
In + cn,kQ)D‖ = ‖k

n
Im + cn,kQm‖ ≤

k

n
+ (m− 1)cn,k

with equality if and only if Q = J − I.

Remark 2. The above corollary is the complex version of Theorem 5.3 in [1].
In [1], 2c-uniform (n,k)-frames for which ‖DV V ∗D‖ is a constant for every D
in D3 are called 3-uniform , or in the terminology of this paper 3c-uniform.

Example 3.6 below shows that there are complex 2c-uniform (n, k)-frames,
say F and G, for which e∞3 (F ) 6= e∞3 (G) which violates parts (1) and (2) of
Proposition 3.3.

Example 3.6. Let F and G be the complex 2c-uniform (9, 3)-frames corre-
sponding to the Seidel matrices

0 1 1 1 1 1 1 1 1
1 0 −1 ω5 ω5 ω5 ω ω ω
1 −1 0 ω ω ω ω5 ω5 ω5

1 ω ω5 0 ω5 ω −1 ω5 ω
1 ω ω5 ω 0 ω5 ω5 ω −1
1 ω ω5 ω5 ω 0 ω −1 ω5

1 ω5 ω −1 ω ω5 0 ω ω5

1 ω5 ω ω ω5 −1 ω5 0 ω
1 ω5 ω ω5 −1 ω ω ω5 0


and 

0 1 1 1 1 1 1 1 1
1 0 −1 ω5 ω5 ω5 ω ω ω
1 −1 0 ω ω ω ω5 ω5 ω5

1 ω ω5 0 ω5 ω 1 ω4 ω2

1 ω ω5 ω 0 ω5 ω2 1 ω4

1 ω ω5 ω5 ω 0 ω4 ω2 1
1 ω5 ω 1 ω4 ω2 0 ω5 ω
1 ω5 ω ω2 1 ω4 ω 0 ω5

1 ω5 ω ω4 ω2 1 ω5 ω 0


respectively, where ω is a primitive 6th root of unity. By computation, we get
e∞3 (F ) ≈ .6465 which is strictly less than k

n + 2cn,k = 2
3 disproving part (1) of

Proposition 3.3. Since e∞3 (G) ≈ 2
3 , we also see that part (2) of Proposition 3.3

fails to hold for complex matrices.
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Part (3) of Proposition 3.3 states that the only real 3c-uniform (n,k)-frames
are the trivial (n, k)-frames. However, the following example shows that in the
complex case there exist non-trivial 3c-uniform frames.

Example 3.7. Let F and G be the complex 2c-uniform frames corresponding
to the Seidel matrices 

0 1 1 1
1 0 −i i
1 i 0 −i
1 −i i 0


and 

0 1 1 1 1 1 1 1
1 0 −i −i −i i i i
1 i 0 −i i −i −i i
1 i i 0 −i −i i −i
1 i −i i 0 i −i −i
1 −i i i −i 0 −i i
1 −i i −i i i 0 −i
1 −i −i i i −i i 0


respectively. These frames are both 3c-uniform and neither of them is a trivial
(n, 1) or (n, n− 1)-frame.

The 2c-uniform frames corresponding to the Seidel matrices in Example 3.7
come from real skew-symmetric matrices with two distinct eigenvalues. A more
detailed discussion of 2c-uniform frames which arise from such matrices can be
found in [7]. The following theorem shows that all 2c-uniform frames which arise
from a real skew-symmetric matrix with two distinct eigenvalues are 3c-uniform.

Theorem 3.8. Let A be real skew-symmetric matrix with two distinct eigenval-
ues and entries ai,j = ±1 when i 6= j and 0 otherwise. The frame corresponding
to the Seidel matrix Q = iA is 3c-uniform.

Proof. By Proposition 3.1 of [7], the standard form of Q has entries

qi,j =


±i, if 1 < i, 1 < j, and i 6= j;
0, if i = j;
1, otherwise

Thus, every compression of Q to three rows and three columns is either of the
form 0 1 1

1 0 i
1 −i 0

 or

0 1 1
1 0 −i
1 i 0


Consequently, ‖V ∗DV ‖ is a constant for all D in D3 from which the result
follows.
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Corollary 3.9. There exist 3c-uniform (n, k)-frames for arbitrarily large values
of n.

The proof of Corollary 3.9 follows from Proposition 3.6 in [7]. While Theorem
3.8 shows that arbitrarily large non-trivial 3c-uniform frames exist, there is still
the question of “Are there non-trivial 3c-uniform frames which come from Seidel
matrices with entries other than i or −i?”. Theorem 3.10 answers this question.
Furthermore, it distinguishes the complex case from the real case, and is the
complex analog of Part (3) of Proposition 3.3.

Theorem 3.10. The trivial 2c-uniform frames, corresponding to k = 1 or k =
n − 1, are 3c-uniform. In addition, F is a non-trivial 3c-uniform frame if and
only if F is a 2c-uniform frame arising from a real skew-symmetric matrix A
with two distinct eigenvalues and entries ai,j = ±1 when i 6= j and 0 otherwise.

The following two lemmas will be used to prove Theorem 3.10.

Lemma 3.11. Suppose 1 ≤ λ ≤ γ ≤ 3 be the largest roots of the polynomials
x3 − 3x2 + 2− 2 cos(α) and x3 − 3x2 + 2− 2 cos(β), respectively. Then α ≥ β.
Furthermore, when 0 ≤ α ≤ β ≤ π, equality holds if and only if λ = γ.

Proof. By assumption,
λ− 3 ≤ γ − 3

which gives
λ2(λ− 3) ≤ γ2(γ − 3).

Combining this with the polynomials we get

2− 2 cos(α) ≤ 2− 2 cos(β),

so cos(α) ≤ cos(β) and α ≥ β.

Lemma 3.12. Suppose F is a 3c-uniform frame with corresponding Seidel ma-
trix Q. Then the entries qij of Q are of the form ω or ω̄ when 1 < i, 1 < j and
i 6= j, for some fixed complex number ω with modulus 1.

Proof. Let M and N be two 3× 3 compressions of the Seidel matrix Q corre-
sponding to the 3-uniform frame F . Since conjugating by an invertible matrix
preserves eigenvalues, we can change M and N to be written as

M =

0 1 1
1 0 α
1 ᾱ 0


and

N =

0 1 1
1 0 β
1 β̄ 0
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where α and β are complex numbers with modulus 1. The characteristic polyno-
mials of M+I3 and N+I3 are x3−3x2 +2−2 cos(α) and x3−3x2 +2−2 cos(β).
Polynomials of this form are discussed in Proposition 3.11. Since the norms of
all 3× 3 compressions are equal, α and β must be equal or conjugates.

The reverse direction is clear.

Proof (of Thm. 3.10). In [1], they observe that the trivial real 2c-uniform
frames are 3c-uniform.

Without loss of generality assume that the Seidel matrix Q associated with
F is in standard form. In the complex case, if F is 3c-uniform, then Lemma
3.12 forces the off diagonal entries of the (n− 1)× (n− 1) compression formed
by removing the first row and column of Q to be either of the form ω or ω̄ where
|ω| = 1.

Suppose that i, j > 1, i 6= j, and the (i, j)-entry of Q is ω. Using the fact
that Q2 = (n− 1)I + µQ it follows that

µω = m1 +m2ω
2 +m3ω̄

2

where m1,m2, and m3 are positive integers. If m1 = m2, then m12Re(ω) +µ =
m3ω̄

3 which forces µ to be complex. If m1 > m2, then

m22Re(ω) + µ = (m1 −m2)ω̄ +m3ω̄
3. (4)

Clearly if m1 −m2 6= m3, the right-hand side of (4) is complex. On the other
hand if m1 −m2 = m3 and ω = eiθ for some 0 ≤ θ < 2π, then eiθ + ei3θ must
be a real number. But this means that sin(θ) + sin(3θ) = 0 which occurs if and
only if ω is a fourth root of unity as desired.

Theorem 3.13. The only nontrivial 4c-uniform frames are the ones in the
equivalence class given by the 4 × 4 Seidel matrix in Example 3.7 previously
mentioned.

Proof. By Theorem 3.10 we know that a nontrivial 3c-uniform frame corre-
sponds to Seidel matrix Q with entries

Qjm =


0 if m = j,
1 if m 6= j and m = 1 or j = 1,
±i otherwise.

The proof of Theorem 3.10 shows that the sum of the entries in each row and
column of q, other than the first, is 1.

Suppose Q is an n × n matrix, then we use Q to describe an edge coloring
of the complete graph Kn−1. Label the vertices by the integers 2, . . . , n. Color
the edge from vertex j to vertex m red if qjm = −i and blue otherwise. It
is well known, see [6, 10], that the Ramsey number r(3, 3) = 6. With our
interpretation of Q giving a coloring, when n ≥ 7 our coloring of Kn−1 contains
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a monochromatic triangle. The labels of the vertices of this triangle along with
1 give us a 4× 4 compression of Q of the form

0 1 1 1
1 0 i i
1 −i 0 i
1 −i −i 0

 or


0 1 1 1
1 0 −i −i
1 i 0 −i
1 i i 0

 .
Without loss of generality, assume that the first of the possible compressions

above is the top left corner of Q. Since the row sums of Q are 1, there is a
column of Q such that qj2 = −i and qj3 = i. With this, the 4× 4 compression
using the rows and columns {1, 2, 3, j} has the form

0 1 1 1
1 0 i −i
1 −i 0 i
1 i −i 0

 .
These two compressions have different norms, so Q is not 4-uniform. A similar
argument works for the other possible compression above.

The cases where n < 7 have been checked computationally.

In [1], the authors showed that the only real 3c-uniform frames are the trivial
(n, n − 1) and (n, 1) frames. Theorem 3.10 extends this classification of 3c-
uniform frames to the complex case. In addition to the real 3c-uniform frames,
we add a new class, in particular the frames derived from real skew-symmetric
matrices with exactly two eigenvalues. Theorem 3.13 takes this classification
one step farther to show that the only real or complex 4c-uniform frames are
the trivial frames and one more, Example 3.7, which is 4c-uniform for the trivial
reason that it has only one 4× 4 compression.

We end the paper by interpreting these results geometrically. A uniform
(n, k)-frame yields a set of n-vectors in Rk (or Ck) which have equal lengths.
Another way to interpret 2-uniform (n, k)-frames (or equivalently ETFs) is that
the area of the parallelogram formed by any two distinct vectors from such a
frame is a constant. Intuitively, it would seem that the volume of the paral-
lelepiped formed by choosing any three distinct vectors from a 2-uniform (n, k)-
frame should be a constant. However, this is not true in general. In the real
case, this is true if and only if the frame is trivial [1], i.e., either an (n, 1) or
(n, n − 1) frame. Similarly, we have proven that in the complex case, the vol-
ume of the parallelepiped formed by choosing any three distinct vectors from a
2-uniform (n, k)-frame is a constant if and only if the Seidel matrix associated
with the frame comes from a real skew-symmetric with exactly two eigenvalues.
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