Competition between *Littoraria irrorata* and *Melampus bidentatus* in the high marsh zone

Elizabeth B. Trotta, Jr., John J. Hutchens, Jr., and James O. Luken

Coastal Marine and Wetland Studies Program and Dept. of Biology, Coastal Carolina University, Conway, SC 29528

Abstract

Strong pressures from abiotic conditions (e.g., temperature, salinity, inundation) and biotic interactions, such as competition, lead to unique distributions of the gastropods, *Melampus bidentatus* and *Littoraria irrorata*, in low, mid- and high-mash zones of southeastern salt marshes. Although *Littoraria* can displace *Melampus* from mid-marsh to high-marsh zones, *Littoraria* abundance and biomass is relatively high in the high marsh zone. Three *Littoraria* density manipulations were used in two habitats differing in dominant plant species *Juncus roemerianus* and *Salicornia virginica*, to test whether competition or abiotic conditions affected the distribution of *Melampus* in the high-mash zone. Growth rates and survivorship were recorded to assess the competitive effects of *Littoraria* on *Melampus*. Soil constituents (e.g., sodium, pH), soil temperature, and soil salinity analyses within patches of *Juncus* and *Salicornia* were used to examine if abiotic conditions influenced differences in distribution of *Melampus* in the high marsh. *Melampus* growth was not significantly different among the three density treatments in either *J. roemerianus* or *S. virginica* habitats. *Melampus* survivorship was significantly different between habitats (higher in *Juncus* than in *Salicornia*) but not among varying density treatments. Soil content was significantly different between *Juncus* and *Salicornia* for pH, phosphorous, and sodium. Temperatures were, on average, higher in *Salicornia* than in *Juncus*. No evidence for competition was found in either *Juncus* or *Salicornia*. Therefore, habitat suitability, in particular abiotic conditions such as salinity and temperature, are most likely determining gastropod assemblages in the high marsh zone of Waites Island.

Introduction

- Melampus bidentatus is known to be limited to the high marsh of southeastern US salt marshes by competitive displacement from the mid-mash by *Littoraria irrorata*. However, *Littoraria* may also be abundant in the high marsh zone. Patterns in *Littoraria* distributions suggest either abiotic conditions or biotic interactions may be structuring gastropod assemblages in the high marsh.
- The overall goal was to examine the effects of *Littoraria* on the growth and survivorship of *Melampus* in the high marsh and to understand the mechanisms structuring *Melampus* distributions.

Objectives

- Examine the distribution of *Littoraria irrorata* and *Melampus bidentatus* (Figure 1) in the high marsh.
- Examine effects of *Littoraria* on growth and survivorship of *Melampus* in habitats dominated by two plant species:
 - *Juncus roemerianus*
 - *Salicornia virginica*
- Examine abiotic conditions in *Juncus* and *Salicornia* that may affect distributions of *Melampus* and *Littoraria*.

Methods

- Studies were conducted in the salt marsh behind Waites Island, SC (Figure 3).
- Distributions were estimated in 1 m x 1 m quadrats haphazardly placed in habitats differing in dominant plant species.
- Differences among habitats were statistically assessed using MANOVA.
- Individuals for growth and survivorship were collected, marked and were placed in square enclosures (area = 1 m² height < 0.5 m) (Figure 2).
- Three treatments included *Melampus* at a constant density of 40 individuals.
- *Littoraria* densities consisted of three levels: zero, an ambient density of 40 individuals, and 80 individuals (2x ambient). A control enclosure of zero individuals was used to estimate cage effects on habitat.
- Treatments were repeated in *Juncus* (n = 6) and *Salicornia* (n = 6).
- Growth and survivorship were estimated at end of experiment (12 weeks) on recovered individuals. Survivorship was repeated during Fall months to assess survivorship during cooler temperatures (*Melampus* were found dead during first two weeks of summer survivorship experiment).
- Differences among treatments were assessed statistically using a one-way ANOVA for growth and survivorship.
- Soil samples from *Juncus* and *Salicornia* were tested for concentrations of Na, Mg, Mn, B, Zn, Copper, Calcium, Potassium and pH.
- Temperatures(ºC) were measured during the 12-week experiment to assess differences in temperatures between habitats.
- Chlorophyll *a* and plant stem heights, density and percent coverage were also assessed.

Results

- A significant difference was found among habitats for *M. bidentatus* abundance (MANOVA, *F*_{3,20} = 13.086, *P* < 0.001). *Melampus* individuals were found in higher numbers in *J. roemerianus* and *S. patens*. No difference was detected among habitats for *L. irrorata* abundance (MANOVA, *F*_{3,20} = 2.044, *P* = 0.140).
- Differences in concentrations of soil constituents between *Juncus* and *Salicornia* were assessed statistically using a one-way ANOVA.
- Temperatures(ºC) were measured during the 12-week experiment to assess differences in temperatures between habitats.
- Chlorophyll *a* and a plant stem heights, density and percent coverage were also assessed.

Conclusions

- Growth and survivorship of *Melampus* were not affected by presence or density manipulations of *Littoraria* in either habitat.
- Survivorship was significantly different between habitats, suggesting abiotic conditions (i.e., higher temperatures) are structuring *Melampus* distributions in the high marsh.
- *Melampus* populations may not be affected by competition because the high marsh may be more heterogeneous than expected allowing for less overlap of resources and more suitable habitats.

Acknowledgements

- Thanks to Dr. Keith Walters.
- Thanks to Clemson University for soil analysis.
- Thanks to Steven Trot, Rachel Hilted, Chris Sauri, Jessie Kanes, Mario Lawrence, Alan Wood and Keri Dikun for their help in the field.