Ecology Lab Introduction

I thought this was ecology—not statistics

Modern ecology includes statistics

- Overkill or essential?

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X mean</td>
<td>9</td>
</tr>
<tr>
<td>X variance</td>
<td>11</td>
</tr>
<tr>
<td>Y mean</td>
<td>7.5</td>
</tr>
<tr>
<td>Y variance</td>
<td>4.122</td>
</tr>
</tbody>
</table>

Three points to remember...

- First, look at the data!
- Second, see if you can apply the ‘O test’
- Third, results come first, statistics second

Anscombe’s quartet

- How statistics can unintentionally lie to you
- Four very different datasets, all with the same basic statistics

Graphical tips (1)

- Above all else, show the data
- Avoid distortion—don’t lie with numbers
- For written reports, use a figure caption; for oral reports, use a descriptive title

Thanks to Chris Hill, Edward Tufte, and Jack Webster
Graphical tips (2)
- Use space efficiently
- Draw axes to fit data
- Use 5 to 10 tick marks on the axes (fewer can sometimes be ok)
- Make sure the data points are big enough

Graphical tips (3)
- Label axes clearly and legibly (units!)
- Use labels on the graph itself, rather than putting a legend in the margin

Graphical tips (4)
- Edward Tufte’s tips
 - Maximize the data-ink ratio
 - Erase non-data ink
 - Erase redundant data ink
 - Revise and edit

A test!

Now, some stats...
- Descriptive statistics
- Comparing groups
- Examining relationships
Descriptive statistics
- Mean or average: central tendency
- Standard deviation: dispersion about a mean

Comparing groups
- Comparing the means of two groups: t-test
- Comparing the means of more than two groups: analysis of variance (ANOVA)
- Recall, complete analysis = graphs AND stats...
 - Comparing groups: bar charts (= column charts in Excel)

Examining relationships
- ‘Cause-effect’ type of relationship between two variables: regression
 - Also: prediction, explaining variation
 - Recall, complete analysis = graphs AND stats...
 - Relationships: x-y scatter plots

Significance
- In science, you only use the word ‘significant’ if you have run statistical tests to see if your results are different than what would be expected from chance
- So how do you determine significance from statistical output?
 - Usually through the use of 1 or 2 pieces of statistical information:
 - Calculated and critical test statistics
 - P-values

Interpreting significance: test statistics
- A result is significant if:
 - The calculated test statistic is greater than the critical (or theoretical) test statistic
 - Example:
 - \(T_{\text{calc}} = 5.34, T_{\text{crit}} = 1.99; \) Because \(T_{\text{calc}} > T_{\text{crit}} \) there is a significant difference between the two means
 - The values for the critical test statistics depend on:
 - the test being run,
 - the sample size,
 - and the probability level being used (usually \(\alpha = 0.05 \))

Interpreting significance: P-values
- A result is significant if:
 - The computer-calculated P-value is less than a pre-defined \(\alpha \)-value (usually 0.05)
 - Example:
 - P-value = 0.01; Because the P-value < 0.05, then there is a significant relationship between the two sets of data
 - P-values, or probability values, describe the probability that observed or more extreme differences would be found if the null hypothesis is true
 - The pre-defined \(\alpha \)-value can vary depending on the needs of the researcher, but scientists often settle on 0.05 (i.e., reaching the wrong conclusion 5% of the time assuming the null hypothesis is true) as being an acceptable chance of error

Channelized streams have more open canopy

Comparing groups: \(\bar{X} \pm \sigma \)

Examining relationships:

Significance:

Interpreting significance: test statistics:

Interpreting significance: P-values:

Easier to observe significance if…

- You have a well-designed study
- You have many replicates
- You have little variability within the treatments or factors in your study
- You have large differences between the variables of interest (i.e., more variability between the treatments or factors)

Time to collect some data

- On the board, record your:
 - Height (in cm)
 - Arm span (in cm) from tip of left to right hand
 - Academic class (e.g., junior, senior)
 - Gender

Look at the data—Graph it

- In groups, everyone should:
 - Copy the data from the board to an Excel spreadsheet
 - Calculate mean height for each academic class & gender
 - Excel formula: =average(x1:x2)
 - Use a Column chart to compare the mean height of one academic class vs. another (usually known as a bar chart)
 - Hint: first highlight data and labels
 - Next, under Insert menu choose 2D column chart
 - Use a Scatter chart to plot all heights vs. all arm spans for entire class (all data, NOT means)
 - Choose Scatter with only markers
 - Make graphs look as good as you can using Layout: you’ll have a chance to edit them later

Today’s report

- Each group submits one column chart and one scatter plot
- Copy and paste them into Word
- Briefly (1-2 sentences) summarize the results and identify which statistical test you would use to examine the data shown in each graph