Temperature relations

Hot enough for you?

Outline

- Microclimate
- Ecological “laws” for individuals
- Temperature optima of organisms
- Temperature regulation by plants and animals

Microclimates

- What environmental conditions are most important for organisms?

Physiological ecology

- AKA ecophysiology
- How individual organisms respond to the abiotic environment:
 - Temperature
 - Water
 - Light
 - Nutrients

 “The Big Four”

Underlying mechanism

- So, how do individual organisms ultimately respond to their environment?
- “Nothing in biology makes sense except in the light of evolution.” The American Biology Teacher (1973)
 - Theodosius Dobzhansky (1900 – 1975)

Ecological “laws” (1)

- Patterns describing how individuals interact with their environment
 - Law of the minimum (von Liebig):
 - Always the same?
 - Co-limitation?
 - Law of limiting factors (Blackman):
Ecological “laws” (2)

- Law of tolerance (Shelford)

Life and temperature

- Life requires a certain temperature (or range of temperatures) for optimal metabolism
 - Cold environments & metabolic rate: prediction?
 - Hot environments & metabolic rate?
 - Why?
 - Overall result?

Trout and an enzyme

- Do trout show an optimum temperature for activity?

Plants and temperature optima

- These last examples show natural selection selects for genetically-determined traits that allow the organism to be adapted physiologically to its thermal environment
- But, can an organism show shorter-term adjustments to changes in temperature (within certain evolutionary-set bounds) that allow it to be successful?
 - Acclimation
 - Temperature regulation

Take-home messages:

- Life is a compromise
 - Can you be adapted to all environmental conditions?
 - Once you have maximum fitness under one set of conditions, what does that mean if the environment changes or if you move?
 - Many species can co-exist in the same region by specializing in different conditions

Shorter-term adjustments to environmental changes

Acetylcholinesterase activity

Rainbow trout have 2 forms of this enzyme

Recent concerns?

Fig. 5.8

Fig. 5.11
Acclimation by desert shrubs

All experimental shrubs were grown from cuttings; so, we do not have to worry about differences due to?

Global heat transfers

Temperature regulation

Organisms must balance gains and losses of heat energy

Direction of heat energy?

Types of heat transfer

- Sunlight (short-wave radiation)
- Long-wave infrared radiation from objects
- Metabolism
- Evaporation
- Conduction
- Convection

Desert plants & heat

Jojoba

Brittlebush

Creosote bush

Also see Fig. 5.16

Types of physiological groupings

- Ectotherms
- Endotherms
- Heterotherms

Ectotherms (1)

Characteristics

- High thermal conductance
- Low metabolic rate

Metabolic rate increases with increasing temperatures

Figure 5.9: Eastern fence lizard

Schmidt-Nielsen 1997
Ectotherms (2)

- Q_{10}
 - $Q_{10} = \frac{R_T}{R_{T-10}}$
 - Where R_T is the rate at any given body temperature T
 - R_{T-10} = rate at body temperature $T - 10^\circ C$
 - Typically Q_{10}'s are around 2, which means?

Ectotherms (3)

- How do you regulate your temperature in more extreme conditions that last a long time?
- Diapause
 - Usually genetically determined and timed by various environmental cues (e.g., light and temperature)

Endotherms

Heterotherms (1)

- Roach
- Hawkmoth

Heterotherms (2)

- Desert tortoise

Heterotherms (3)

- Dormouse