Population growth

How can there be so many mosquitoes?

Modeling population growth

- Depends on how organisms reproduce
 - In a discrete, non-overlapping way, often called _______ growth
 - In a continuous, overlapping way
- Either way, populations only change in abundance because of four parameters...
- Nevertheless, we often assume a closed population, which means we ignore...

Lecture outline

- Two models of population growth
 - Little r
 - Exponential population growth
 - Logistic population growth
 - Density-dependent regulation of populations

Modeling population growth

- At any moment in time, an individual's contribution to population growth is modelled as the per capita or intrinsic or instantaneous rate of increase
- \(r = \text{__________} \)
 - \(b = \text{_____} / \text{______} \)
 - \(d = \text{_____} / \text{______} \)
- If \(r > 0 \), population is ?
- If \(r = 0 \), population is ?
- If \(r < 0 \), population is ?

Species	\(r \)	Doubling time
E. coli | 58.7 | 17 min
Paramecium | 1.59 | 10.5 hr
Tribolium | 0.101 | 6.9 days
Rattus | 0.015 | 46.8 days
Bos | 0.001 | 1.9 yr
Nothofagus | 0.000075 | 25.3 yr

From Gotelli

One equation for exponential growth

- When is this applicable?

\[
N_t = N_0 e^{rt}
\]

\(e \) equals the initial number times \(e \) raised to the power \(rt \)

The number at time \(t \)...

Base of the natural logarithms

Intrinsic rate of increase, in offspring per time interval

Number of time intervals in hours, days, years, etc.

\[e = 2.71828 \]

Fig. 11.4 bottom

Exponential growth in nature

Since their protection in 1940, the whooping crane population grew exponentially from 22 to 230 individuals in 2005.

Fig. 11.6
A second exponential equation

- Instead of just looking at the total number of individuals, we can also express exponential growth as the rate of change in population size.

\[\frac{dN}{dt} = rN \]

(Differential form)

Importance of magnitude of \(r \)

- \(r = 0.08, 0.1, \text{or} 0.15; N_0 = 1000; t = 1 \text{ yr}; 1000 \text{ new immigrants each year, too (total = 36,000 to 50,000); note shape} \)

Is exponential growth always realistic?

- Why or why not?

Logistic growth in the lab and field

Logistic growth

- Shape?
What is K?

- Medium ground finch

![Fig. 11.17](image)

Logistic growth

- Shape?

![Fig. 11.8](image)

Optimal yield

- Figure 4 Catches of Peruvian anchovy
 - Million tonnes
 - El Niño years

![Source: FAO Fishery Database](image)

Population regulation

- K is thought to be an equilibrium density and is maintained by **density-dependent regulation**
 - As population size changes, birth and death rates change, too
 - So, for a population to be regulated at this equilibrium, it must be controlled by **density-dependent factors**

![Pearl (1927)](image)

Logistic growth equation

- The logistic equation gives the rate of population change as a function of \(r_{max}, N, \) and \(K \).

\[
\frac{dN}{dt} = r_{max} N \left(1 - \frac{N}{K}\right)
\]

- Change in numbers
- Change in time
- Intrinsic rate of increase
- Carrying capacity

What are some factors affecting population size?

- Which ones are "density dependent" factors?
- Which ones are "density independent"?