Speciation
Macroevolution

Lecture outline
- Species definitions
- Keeping species separate
- Modes of speciation

What’s a species?
- **Species** is Latin for ‘kind’ or ‘appearance’
- Biologists have officially described MANY species
 - Roughly 1.8 million
 - Is there an official count?
 - The Catalogue of Life
 - Includes 1,837,565 species as of 2019

A brief detour on writing
- “Species” is both singular and plural
- Species names are written using binomial nomenclature of Latin or Latinized versions of words
- **Genus species**
 - The actual names are italicized
 - **Genus** is always capitalized
 - **species** is always lower case
- **Pycnopsyche gentilis**

Species concepts
- Our ideas about how best to define a species have changed over time
- A challenge:
 - If speciation is occurring, no species concept will “work” all the time - you should always be able to find debatable forms

How can you tell when something is a different ‘kind’ than something else?

![Meadowlarks](image)

Fig. 24.2a
Morphological species concept (1)

- Defined by...
- Type specimen
- Morphospecies?

Diatoms

Morphological species concept (2)

- Any problems?

Golden silk orb weaver
Nephila clavipes

Biological species concept

- Ernst Mayr (1904-2005)
 - German ornithologist
 - Modern Synthesis
- Population or group of populations that have the potential to interbreed in nature and produce viable, fertile offspring (1942)
- Gene flow?
- Problems?

Mayr on right in New Guinea

Reproductive isolation

- Two types of biological barriers to reproduction
 - Prezygotic vs. Postzygotic barriers

Fig. 24.3

Prezygotic barriers overview

- Habitat isolation
- Temporal isolation
- Behavioral isolation
- Mechanical isolation
- Gametic isolation

Notice anything in common?

Fig. 24.3

Prezygotic barriers (1)

- Habitat isolation

Three-spined stickleback species differ by lake habitat: benthic vs. pelagic zones

Peichel et al. (2001)
Prezygotic barriers (2)
- Temporal isolation

Fig. 24.3 c & d

Prezygotic barriers (3)
- Behavioral isolation

Fig. 24.2a

- Song
 - Eastern meadowlark
 - Western meadowlark

Prezygotic barriers (4)
- Mechanical isolation

Fig. 24.3g

- Gametic isolation

Fig. 24.3

Prezygotic barriers (5)

Postzygotic barriers overview
- Reduced hybrid viability
- Reduced hybrid fertility
- Hybrid breakdown

Notice anything in common?

Postzygotic barriers (1)
- Reduced hybrid viability: hybrid offspring dies during development

Fig. 24.3
Postzygotic barriers (2)

- **Reduced hybrid fertility**: hybrid offspring are sterile

![Horse + donkey = sterile mule](image)

Hybrid

Postzygotic barriers (3)

- **Hybrid breakdown**: hybrids are fertile, but their offspring either die or are sterile

![Hybrid cultivated rice plants with stunted offspring (center)](image)

Several other species concepts have been proposed

- **Phylogenetic species concept**
 - Minimum number of individuals that share a common ancestor forming a branch on an evolutionary tree

- **Ecological Species Concept**
 - Group of organisms adapted to a particular set of resources, called a *niche*, in the environment

- **Different species concepts agree most of the time**
 - They differ mostly when applied to borderline or poorly understood cases

Modes of speciation

- **2 species from 1**
 - = cladogenesis

- **Allopatric vs. sympatric speciation**

![Evidence for allopatric speciation](image)

Snapping shrimp vs. Isthmus of Panama

![Evidence for sympatric speciation](image)

- **Habitat differentiation**
- **Sexual selection**
- **Polyploidy**
 - 80%(!) of plants

![Evidence for autopolyplody](image)

Bread wheat

Fig. 24.3i

Fig. 24.5

Fig. 24.8

Fig. 24.9
Sympatric speciation (2)
- Polyploidy in tree frogs
 - Cope’s gray tree frog
 - *Hyla chrysocelis*
 - Call
 - Gray tree frog
 - *Hyla versicolor*
 - Call
 - 24 Diploid
 - 48 Tetraploid

Sympatric speciation (3)
- Sexual selection/Mate choice
 - Cichlids
 - EXPERIMENT
 - Normal light
 - Monochromatic orange light
 - *P. pundamilia*
 - *P. nyererei*
 - Fig. 24.12

What happens when allopatric populations meet?
- Hybrid zone formation
 - Fig. 24.14
 - Possible outcomes:
 - Isolated population diverges
 - Hybrid zone
 - Reinforcement
 - Fusion
 - Stability
 - Hybrid individual
 - Gene flow
 - Population
 - Barrier to gene flow

Hybrid zones: Reinforcement
- Phlox spp.
 - In Texas where *P. cuspidate* and *P. drummondii* occur together, the *P. drummondii* has evolved dark-red flowers. This newly evolved flower color causes pollinators to only visit the correct species.
 - Photo credit (A) David L. Des Marais and (B) Robin Hopkins.
 - Matute & Ortiz-Barrientos (2014) Current Biology

Hybrid zones: Fusion
- *Pundamilia nyererei* *Pundamilia pundamilia*
 - *Pundamilia “turbid water,”* hybrid offspring from a location with turbid water
 - Fig. 24.15